Formal Ontology Generation by Deep Machine Learning

被引:0
作者
Wang, Yingxu [1 ,2 ]
Valipour, Mehrdad [1 ,2 ]
Zatarain, Omar A. [1 ,2 ]
Gavrilova, Marina [1 ,2 ]
Hussain, Amir [3 ]
Howard, Newton [4 ]
Patel, Shushma [5 ]
机构
[1] Univ Calgary, Int Inst Cognit Informat & Cognit Comp ICIC, Schulich Sch Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Hotchkiss Brain Inst, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[3] Univ Stirling, Dept Comp Sci, Stirling, Scotland
[4] Oxford Neurocomp Lab NCL, Oxford, England
[5] London South Bank Univ, Sch Engn, London, England
来源
2017 IEEE 16TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC) | 2017年
基金
加拿大自然科学与工程研究理事会;
关键词
Ontology; formal models; autonomic generation; concept algebra; machine learning; knowledge representation; cognitive robot; denotational semantics; cognitive computing; AI; computational intelligence; DENOTATIONAL MATHEMATICS; CONCEPT ALGEBRA; KNOWLEDGE; SYNTAX;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An ontology is a taxonomic hierarchy of lexical terms and their syntactic and semantic relations for representing a framework of structured knowledge. Ontology used to be problem-specific and manually built due to its extreme complexity. Based on the latest advances in cognitive knowledge learning and formal semantic analyses, an Algorithm of Formal Ontology Generation (AFOG) is developed. The methodology of AFOG enables autonomous generation of quantitative ontologies in knowledge engineering and semantic comprehension via deep machine learning. A set of experiments demonstrates applications of AFOG in cognitive computing, semantic computing, machine learning and computational intelligence.
引用
收藏
页码:6 / 15
页数:10
相关论文
共 50 条
[31]   A survey on advanced machine learning and deep learning techniques assisting in renewable energy generation [J].
Sri Revathi B. .
Environmental Science and Pollution Research, 2023, 30 :93407-93421
[32]   Machine learning and deep learning [J].
Janiesch, Christian ;
Zschech, Patrick ;
Heinrich, Kai .
ELECTRONIC MARKETS, 2021, 31 (03) :685-695
[33]   Machine learning and deep learning [J].
Christian Janiesch ;
Patrick Zschech ;
Kai Heinrich .
Electronic Markets, 2021, 31 :685-695
[34]   A Formal Proof of the Expressiveness of Deep Learning [J].
Alexander Bentkamp ;
Jasmin Christian Blanchette ;
Dietrich Klakow .
Journal of Automated Reasoning, 2019, 63 :347-368
[35]   A Formal Proof of the Expressiveness of Deep Learning [J].
Bentkamp, Alexander ;
Blanchette, Jasmin Christian ;
Klakow, Dietrich .
JOURNAL OF AUTOMATED REASONING, 2019, 63 (02) :347-368
[36]   Deep learning for procedural content generation [J].
Liu, Jialin ;
Snodgrass, Sam ;
Khalifa, Ahmed ;
Risi, Sebastian ;
Yannakakis, Georgios N. ;
Togelius, Julian .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (01) :19-37
[37]   MIXED FORMAL LEARNING A Path to Transparent Machine Learning [J].
Carrico, Sandra .
2019 13TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2019, :486-488
[38]   Research on Ontology Integration Combined with Machine learning [J].
Zhu, Li ;
Yang, Qing ;
Chen, Wei .
ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, :464-467
[39]   The Impact of Ontology on the Prediction of Cardiovascular Disease Compared to Machine Learning Algorithms [J].
El Massari, Hakim ;
Gherabi, Noreddine ;
Mhammedi, Sajida ;
Ghandi, Hamza ;
Bahaj, Mohamed ;
Naqvi, Muhammad Raza .
INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (11) :143-157
[40]   Text Classification Method Based on Machine Learning and Domain Knowledge Ontology [J].
Gao, Zhiyong ;
Qiao, Shuhan ;
Liang, Yongquan .
PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND OPTIMIZATION TECHNOLOGIES AND APPLICATIONS (MSOTA2016), 2016, 58 :344-347