Formal Ontology Generation by Deep Machine Learning

被引:0
作者
Wang, Yingxu [1 ,2 ]
Valipour, Mehrdad [1 ,2 ]
Zatarain, Omar A. [1 ,2 ]
Gavrilova, Marina [1 ,2 ]
Hussain, Amir [3 ]
Howard, Newton [4 ]
Patel, Shushma [5 ]
机构
[1] Univ Calgary, Int Inst Cognit Informat & Cognit Comp ICIC, Schulich Sch Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Hotchkiss Brain Inst, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[3] Univ Stirling, Dept Comp Sci, Stirling, Scotland
[4] Oxford Neurocomp Lab NCL, Oxford, England
[5] London South Bank Univ, Sch Engn, London, England
来源
2017 IEEE 16TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC) | 2017年
基金
加拿大自然科学与工程研究理事会;
关键词
Ontology; formal models; autonomic generation; concept algebra; machine learning; knowledge representation; cognitive robot; denotational semantics; cognitive computing; AI; computational intelligence; DENOTATIONAL MATHEMATICS; CONCEPT ALGEBRA; KNOWLEDGE; SYNTAX;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An ontology is a taxonomic hierarchy of lexical terms and their syntactic and semantic relations for representing a framework of structured knowledge. Ontology used to be problem-specific and manually built due to its extreme complexity. Based on the latest advances in cognitive knowledge learning and formal semantic analyses, an Algorithm of Formal Ontology Generation (AFOG) is developed. The methodology of AFOG enables autonomous generation of quantitative ontologies in knowledge engineering and semantic comprehension via deep machine learning. A set of experiments demonstrates applications of AFOG in cognitive computing, semantic computing, machine learning and computational intelligence.
引用
收藏
页码:6 / 15
页数:10
相关论文
共 50 条
  • [21] Energy generation forecasting: elevating performance with machine and deep learning
    Mystakidis, Aristeidis
    Ntozi, Evangelia
    Afentoulis, Konstantinos
    Koukaras, Paraskevas
    Gkaidatzis, Paschalis
    Ioannidis, Dimosthenis
    Tjortjis, Christos
    Tzovaras, Dimitrios
    COMPUTING, 2023, 105 (08) : 1623 - 1645
  • [22] Deep and Machine Learning Models to Forecast Photovoltaic Power Generation
    Cantillo-Luna, Sergio
    Moreno-Chuquen, Ricardo
    Celeita, David
    Anders, George
    ENERGIES, 2023, 16 (10)
  • [23] Energy generation forecasting: elevating performance with machine and deep learning
    Aristeidis Mystakidis
    Evangelia Ntozi
    Konstantinos Afentoulis
    Paraskevas Koukaras
    Paschalis Gkaidatzis
    Dimosthenis Ioannidis
    Christos Tjortjis
    Dimitrios Tzovaras
    Computing, 2023, 105 : 1623 - 1645
  • [24] A Deep Learning Model Generation Method for Code Reuse and Automatic Machine Learning
    Lee, Keon Myung
    Hwang, Kyoung Soon
    Kim, Kwang Il
    Lee, Sang Hyun
    Park, Ki Sun
    PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 47 - 52
  • [25] An ontology-based framework for worker's health reasoning enabled by machine learning
    Bavaresco, Rodrigo
    Ren, Yutian
    Barbosa, Jorge
    Li, G. P.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 193
  • [26] Augmented Ontology by Handshaking with Machine Learning
    Kim, Marie
    Kang, Hyunjoong
    Kwon, Soonhyun
    Lee, YongJoon
    Kim, Kwihoon
    Pyo, Cheol Sik
    2017 19TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATIONS TECHNOLOGY (ICACT) - OPENING NEW ERA OF SMART SOCIETY, 2017, : 740 - 743
  • [27] Web-based Automatic Deep Learning Service Generation System by Ontology Technologies
    Paik, Incheon
    Zeng, Kungan
    Bae, Munhan
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, CSE, 2022, : 65 - 72
  • [28] Formal Relational Rules of English Syntax for Cognitive Linguistics, Machine Learning, and Cognitive Computing
    Wang, Yingxu
    Berwick, Robert C.
    JOURNAL OF ADVANCED MATHEMATICS AND APPLICATIONS, 2013, 2 (02) : 182 - 195
  • [29] A survey on advanced machine learning and deep learning techniques assisting in renewable energy generation
    Revathi, B. Sri
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (41) : 93407 - 93421
  • [30] A survey on advanced machine learning and deep learning techniques assisting in renewable energy generation
    Sri Revathi B.
    Environmental Science and Pollution Research, 2023, 30 : 93407 - 93421