Iterative Sparse Matrix-Vector Multiplication on In-Memory Cluster Computing Accelerated by GPUs for Big Data

被引:0
|
作者
Peng, Jiwu [1 ,2 ]
Xiao, Zheng [1 ,2 ]
Chen, Cen [1 ,2 ]
Yang, Wangdong [1 ,2 ]
机构
[1] Hunan Univ, Coll Informat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Natl Supercomp Ctr Changsha, Changsha 410082, Hunan, Peoples R China
来源
2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD) | 2016年
关键词
Iterative SpMV; Flink; GPU; In-memory Computing; BigData;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Iterative SpMV (ISpMV) is a key operation in many graph-based data mining algorithms and machine learning algorithms. Along with the development of big data, the matrices can be so large, perhaps billion-scale, that the SpMV can not be implemented in a single computer. Therefore, it is a challenging issue to implement and optimize SpMV for large-scale data sets. In this paper, we used an in-memory heterogeneous CPU-GPU cluster computing platforms (IMHCPs) to efficiently solve billion-scale SpMV problem. A dedicated and efficient hierarchy partitioning strategy for sparse matrices and the vector is proposed. The partitioning strategy contains partitioning sparse matrices among workers in the cluster and among GPUs in one worker. More, the performance of the IMHCPs-based SpMV is evaluated from the aspects of computation efficiency and scalability.
引用
收藏
页码:1454 / 1460
页数:7
相关论文
共 50 条
  • [1] Optimization techniques for sparse matrix-vector multiplication on GPUs
    Maggioni, Marco
    Berger-Wolf, Tanya
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2016, 93-94 : 66 - 86
  • [2] Time Complexity of In-Memory Matrix-Vector Multiplication
    Sun, Zhong
    Huang, Ru
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (08) : 2785 - 2789
  • [3] GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
    Tao, Yuan
    Deng, Yangdong
    Mu, Shuai
    Zhang, Zhenzhong
    Zhu, Mingfa
    Xiao, Limin
    Ruan, Li
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14) : 3771 - 3789
  • [4] Optimization of Sparse Matrix-Vector Multiplication with Variant CSR on GPUs
    Feng, Xiaowen
    Jin, Hai
    Zheng, Ran
    Hu, Kan
    Zeng, Jingxiang
    Shao, Zhiyuan
    2011 IEEE 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2011, : 165 - 172
  • [5] Fast Sparse Matrix-Vector Multiplication on GPUs for Graph Applications
    Ashari, Arash
    Sedaghati, Naser
    Eisenlohr, John
    Parthasarathy, Srinivasan
    Sadayappan, P.
    SC14: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2014, : 781 - 792
  • [6] Characterizing Dataset Dependence for Sparse Matrix-Vector Multiplication on GPUs
    Sedaghati, Naser
    Ashari, Arash
    Pouchet, Louis-Noel
    Parthasarathy, Srinivasan
    Sadayappan, P.
    2ND WORKSHOP ON PARALLEL PROGRAMMING FOR ANALYTICS APPLICATIONS (PPAA 2015), 2015, : 17 - 24
  • [7] TileSpMV: A Tiled Algorithm for Sparse Matrix-Vector Multiplication on GPUs
    Niu, Yuyao
    Lu, Zhengyang
    Dong, Meichen
    Jin, Zhou
    Liu, Weifeng
    Tan, Guangming
    2021 IEEE 35TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2021, : 68 - 78
  • [8] Efficient Sparse Matrix-Vector Multiplication on GPUs using the CSR Format, Pinned Memory and Overlap Data Transfer
    Huillcen Baca, Herwin Alayn
    Palomino Valdivia, Flor de Luz
    PROCEEDINGS OF THE 2019 IEEE XXVI INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2019,
  • [9] CoAdELL: Adaptivity and Compression for Improving Sparse Matrix-Vector Multiplication on GPUs
    Maggioni, Marco
    Berger-Wolf, Tanya
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 934 - 941
  • [10] Optimizing Sparse Matrix-Vector Multiplication on GPUs via Index Compression
    Sun, Xue
    Wei, Kai-Cheng
    Lai, Lien-Fu
    Tsai, Sung-Han
    Wu, Chao-Chin
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 598 - 602