Comparative Transcriptome Analysis Reveals New lncRNAs Responding to Salt Stress in Sweet Sorghum

被引:65
作者
Sun, Xi [1 ]
Zheng, Hongxiang [1 ]
Li, Jinlu [1 ]
Liu, Luning [3 ,4 ]
Zhang, Xiansheng [2 ]
Sui, Na [1 ]
机构
[1] Shandong Normal Univ, Coll Life Sci, Shandong Prov Key Lab Plant Stress, Jinan, Peoples R China
[2] Shandong Agr Univ, Coll Life Sci, State Key Lab Crop Biol, Tai An, Shandong, Peoples R China
[3] Univ Liverpool, Inst Integrat Biol, Liverpool, Merseyside, England
[4] Ocean Univ China, Coll Marine Life Sci, Qingdao, Peoples R China
基金
英国生物技术与生命科学研究理事会; 国家重点研发计划;
关键词
sweet sorghum; non-coding regulatory; lncRNA; ceRNA network; salt tolerance; LONG NONCODING RNAS; ROOT HAIR INITIATION; GENE-EXPRESSION; THELLUNGIELLA-HALOPHILA; BINDING PROTEIN; IDENTIFICATION; TOLERANCE; YEAST; COLD; METHYLATION;
D O I
10.3389/fbioe.2020.00331
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Long non-coding RNAs (lncRNAs) can enhance plant stress resistance by regulating the expression of functional genes. Sweet sorghum is a salt-tolerant energy crop. However, little is known about how lncRNAs in sweet sorghum respond to salt stress. In this study, we identified 126 and 133 differentially expressed lncRNAs in the salt-tolerant M-81E and the salt-sensitive Roma strains, respectively. Salt stress induced three new lncRNAs in M-81E and inhibited two new lncRNAs in Roma. These lncRNAs included lncRNA13472, lncRNA11310, lncRNA2846, lncRNA26929, and lncRNA14798, which potentially function as competitive endogenous RNAs (ceRNAs) that influence plant responses to salt stress by regulating the expression of target genes related to ion transport, protein modification, transcriptional regulation, and material synthesis and transport. Additionally, M-81E had a more complex ceRNA network than Roma. This study provides new information regarding lncRNAs and the complex regulatory network underlying salt-stress responses in sweet sorghum.
引用
收藏
页数:14
相关论文
共 71 条
[1]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[2]  
[Anonymous], EXPLORING RNAI GENOM
[3]   Long Noncoding RNA Modulates Alternative Splicing Regulators in Arabidopsis [J].
Bardou, Florian ;
Ariel, Federico ;
Simpson, Craig G. ;
Romero-Barrios, Natali ;
Laporte, Philippe ;
Balzergue, Sandrine ;
Brown, John W. S. ;
Crespi, Martin .
DEVELOPMENTAL CELL, 2014, 30 (02) :166-176
[4]   Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in Arabidopsis [J].
Barragan, Veronica ;
Leidi, Eduardo O. ;
Andres, Zaida ;
Rubio, Lourdes ;
De Luca, Anna ;
Fernandez, Jose A. ;
Cubero, Beatriz ;
Pardo, Jose M. .
PLANT CELL, 2012, 24 (03) :1127-1142
[5]   Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants [J].
Chen, Liyuan ;
Lee, Joo Hyun ;
Weber, Henriette ;
Tohge, Takayuki ;
Witt, Sandra ;
Roje, Sanja ;
Fernie, Alisdair R. ;
Hellmann, Hanjo .
PLANT CELL, 2013, 25 (06) :2253-2264
[6]   Regulation of root hair initiation and expansin gene expression in Arabidopsis [J].
Cho, HT ;
Cosgrove, DJ .
PLANT CELL, 2002, 14 (12) :3237-3253
[7]   Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins [J].
Corratge-Faillie, Claire ;
Lacombe, Benoit .
JOURNAL OF EXPERIMENTAL BOTANY, 2017, 68 (12) :3107-3113
[8]   Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut [J].
Cui, Feng ;
Sui, Na ;
Duan, Guangyou ;
Liu, Yiyang ;
Han, Yan ;
Liu, Shanshan ;
Wan, Shubo ;
Li, Guowei .
FRONTIERS IN PLANT SCIENCE, 2018, 9
[9]   Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress [J].
Deng, Fenni ;
Zhang, Xiaopei ;
Wang, Wei ;
Yuan, Rui ;
Shen, Fafu .
BMC PLANT BIOLOGY, 2018, 18
[10]   Base-calling of automated sequencer traces using phred.: II.: Error probabilities [J].
Ewing, B ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :186-194