Astrocyte Regulation of Blood Flow in the Brain

被引:255
作者
MacVicar, Brian A. [1 ]
Newman, Eric A. [2 ]
机构
[1] Univ British Columbia, Dept Psychiat, Djavad Mowafaghian Ctr Brain Hlth, Vancouver, BC V6T 2B5, Canada
[2] Univ Minnesota, Dept Neurosci, Minneapolis, MN 55455 USA
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
INTERCELLULAR CALCIUM WAVES; SPREADING DEPRESSION; NITRIC-OXIDE; BIDIRECTIONAL CONTROL; RECEPTOR ACTIVATION; FLICKER STIMULATION; TISSUE OXYGENATION; ALZHEIMER-DISEASE; NEURONAL-ACTIVITY; EXTRACELLULAR-K;
D O I
10.1101/cshperspect.a020388
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Neuronal activity results in increased blood flow in the brain, a response named functional hyperemia. Astrocytes play an important role in mediating this response. Neurotransmitters released from active neurons evoke Ca2+ increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid from astrocyte endfeet onto blood vessels. Synthesis of prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs) dilate blood vessels, whereas 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K+ from astrocyte endfeet may also contribute to vasodilation. Oxygen modulates astrocyte regulation of blood flow. Under normoxic conditions, astrocytic Ca2+ signaling results in vasodilation, whereas under hyperoxic conditions, vasoconstriction is favored. Astrocytes also contribute to the generation of vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone. Under pathological conditions, including Alzheimer's disease and diabetic retinopathy, disruption of normal astrocyte physiology can compromise the regulation of blood flow.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 98 条
[1]   Inflammation and Alzheimer's disease [J].
Akiyama, H ;
Barger, S ;
Barnum, S ;
Bradt, B ;
Bauer, J ;
Cole, GM ;
Cooper, NR ;
Eikelenboom, P ;
Emmerling, M ;
Fiebich, BL ;
Finch, CE ;
Frautschy, S ;
Griffin, WST ;
Hampel, H ;
Hull, M ;
Landreth, G ;
Lue, LF ;
Mrak, R ;
Mackenzie, IR ;
McGeer, PL ;
O'Banion, MK ;
Pachter, J ;
Pasinetti, G ;
Plata-Salaman, C ;
Rogers, J ;
Rydel, R ;
Shen, Y ;
Streit, W ;
Strohmeyer, R ;
Tooyoma, I ;
Van Muiswinkel, FL ;
Veerhuis, R ;
Walker, D ;
Webster, S ;
Wegrzyniak, B ;
Wenk, G ;
Wyss-Coray, T .
NEUROBIOLOGY OF AGING, 2000, 21 (03) :383-421
[2]  
Alzheimer A., 1907, Allg Zeitschrift Psychiatr, V64, P146, DOI DOI 10.1002/CA.980080612
[3]  
[Anonymous], 1995, HIST NEUROSCIENCE
[4]   Glial and neuronal control of brain blood flow [J].
Attwell, David ;
Buchan, Alastair M. ;
Charpak, Serge ;
Lauritzen, Martin ;
MacVicar, Brian A. ;
Newman, Eric A. .
NATURE, 2010, 468 (7321) :232-243
[5]   The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand [J].
Bekar, Lane K. ;
Wei, Helen S. ;
Nedergaard, Maiken .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2012, 32 (12) :2135-2145
[6]   The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow [J].
Blinder, Pablo ;
Tsai, Philbert S. ;
Kaufhold, John P. ;
Knutsen, Per M. ;
Suhl, Harry ;
Kleinfeld, David .
NATURE NEUROSCIENCE, 2013, 16 (07) :889-U150
[7]   Astrocytic Gq-GPCR-Linked IP3R-Dependent Ca2+ Signaling Does Not Mediate Neurovascular Coupling in Mouse Visual Cortex In Vivo [J].
Bonder, Daniel E. ;
McCarthy, Ken D. .
JOURNAL OF NEUROSCIENCE, 2014, 34 (39) :13139-13150
[8]   STUDIES ON POTASSIUM INDUCED CORONARY DILATION IN ISOLATED GUINEA-PIG HEART [J].
BUNGER, R ;
HADDY, FJ ;
QUERENGASSER, A ;
GERLACH, E .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1976, 363 (01) :27-31
[9]  
Cajal SR., 1895, Revista de Medicina y Cirugia Practicas (Madrid), V19, P497
[10]   Cortical GABA interneurons in neurovascular coupling: Relays for subcortical vasoactive pathways [J].
Cauli, B ;
Tong, XK ;
Rancillac, A ;
Serluca, N ;
Lambolez, B ;
Rossier, J ;
Hamel, E .
JOURNAL OF NEUROSCIENCE, 2004, 24 (41) :8940-8949