On a class of optimal stopping problems for diffusions with discontinuous coefficients

被引:13
作者
Rueschendorf, Ludger [1 ]
Urusov, Mikhail A. [2 ,3 ]
机构
[1] Univ Freiburg, Dept Math Stochast, D-79104 Freiburg, Germany
[2] Berlin Univ Technol, Inst Math, D-10623 Berlin, Germany
[3] Deutsche Bank AG, Quantitat Prod Lab, Global Markets Equit, D-10178 Berlin, Germany
关键词
optimal stopping; free boundary problem; one-dimensional SDE; Engelbert-Schmidt condition; local times; occupation times formula; Ito-Tanaka formula;
D O I
10.1214/07-AAP474
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a modification of the free boundary problem related to optimal stopping problems for diffusion processes. This modification allows the application of this PDE method in cases where the usual regularity assumptions on the coefficients and on the gain function are not satisfied. We apply this method to the optimal stopping of integral functionals with exponential discount of the form E-x root(tau)(0)e-(lambda s) f (X-s) ds, lambda >= 0 for one-dimensional diffusions X. We prove a general verification theorem which justifies the modified version of the free boundary problem. In the case of no drift and discount, the free boundary problem allows to give a complete and explicit discussion of the stopping problem.
引用
收藏
页码:847 / 878
页数:32
相关论文
共 19 条