On weakly H-subgroups of finite groups II

被引:5
作者
Chen, Ruifang [1 ]
Li, Xiaoli [1 ]
Zhao, Xianhe [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
p-nilpotent group; supersolvable group; weakly H-subgroup; C-NORMALITY; SUPERSOLVABILITY;
D O I
10.1080/00927872.2022.2057510
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group. A subgroup H of G is called an H-subgroup in G if N-G(H) boolean AND H-x <= H for all x is an element of G. Furthermore, a subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = HK and H boolean AND K is an H-subgroup in G. In this article, some new criteria for a group to be p-nilpotent and supersolvable are given.
引用
收藏
页码:4009 / 4015
页数:7
相关论文
共 18 条
[1]   On p-nilpotence and supersolvability of finite groups [J].
Asaad, M .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (01) :189-195
[2]   On c-normality of finite groups [J].
Asaad, M ;
Mohamed, ME .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 78 :297-304
[3]   ON WEAKLY H-SUBGROUPS OF FINITE GROUPS [J].
Asaad, M. ;
Heliel, A. A. ;
Al-Shomrani, M. M. Al-Mosa .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (09) :3540-3550
[4]   On finite J-groups [J].
Ballester-Bolinches, A ;
Esteban-Romero, R .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 75 :181-191
[5]   On finite solvable groups in which normality is a transitive relation [J].
Bianchi, M ;
Mauri, AGB ;
Herzog, M ;
Verardi, L .
JOURNAL OF GROUP THEORY, 2000, 3 (02) :147-156
[6]   On supersolvable groups and the nilpotator [J].
Csörgö, P ;
Herzog, M .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (02) :609-620
[7]   A question on weakly H-subgroups of a finite group [J].
Gao, Jinxin ;
Guo, Xiuyun .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (08)
[8]  
Gorenstein D., 1968, Finite Groups
[9]   The influence of H-subgroups on the structure of finite groups [J].
Guo, Xiuyun ;
Wei, Xianbiao .
JOURNAL OF GROUP THEORY, 2010, 13 (02) :267-276
[10]  
Huppert B., 1967, Endliche Gruppen. I, V134