Symmetric factorization of the conformation tensor in viscoelastic fluid models

被引:86
作者
Balci, Nusret [2 ]
Thomases, Becca [2 ,3 ]
Renardy, Michael [2 ,4 ]
Doering, Charles R. [1 ,2 ,5 ,6 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
[3] Univ Calif Davis, Dept Mathematics, Davis, CA 95616 USA
[4] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Viscoelastic fluid models; Oldroyd-B; FENE-P; Numerical methods; Direct numerical simulations; NUMBERS;
D O I
10.1016/j.jnnfm.2011.02.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The positive-definite symmetric polymer conformation tensor possesses a unique symmetric square root that satisfies a closed evolution equation in the Oldroyd-B and FENE-P models of viscoelastic fluid flow. When expressed in terms of the velocity field and the symmetric square root of the conformation tensor, these models' equations of motion formally constitute an evolution in a Hilbert space with a total energy functional that defines a norm. Moreover, this formulation is easily implemented in direct numerical simulations resulting in significant practical advantages in terms of both accuracy and stability. (C) 2011 Elsevier By. All rights reserved.
引用
收藏
页码:546 / 553
页数:8
相关论文
共 21 条
[1]  
[Anonymous], NEW J PHYS
[2]  
[Anonymous], STOKESIAN VISC UNPUB
[3]   Elastic instabilities of polymer solutions in cross-channel flow [J].
Arratia, PE ;
Thomas, CC ;
Diorio, J ;
Gollub, JP .
PHYSICAL REVIEW LETTERS, 2006, 96 (14)
[4]   Two-dimensional elastic turbulence [J].
Berti, S. ;
Bistagnino, A. ;
Boffetta, G. ;
Celani, A. ;
Musacchio, S. .
PHYSICAL REVIEW E, 2008, 77 (05)
[5]   Study on the characteristics of turbulent drag-reducing channel flow by particle image velocimetry combining with proper orthogonal decomposition analysis [J].
Cai, W. -H. ;
Li, F-C. ;
Zhang, H. -N. ;
Li, X. -B. ;
Yu, B. ;
Wei, J-J ;
Kawaguchi, Y. ;
Hishida, K. .
PHYSICS OF FLUIDS, 2009, 21 (11) :1-12
[6]   Failure of energy stability in Oldroyd-B fluids at arbitrarily low Reynolds numbers [J].
Doering, CR ;
Eckhardt, B ;
Schumacher, J .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2006, 135 (2-3) :92-96
[7]   EXISTENCE OF SOLUTIONS FOR ALL DEBORAH NUMBERS FOR A NON-NEWTONIAN MODEL MODIFIED TO INCLUDE DIFFUSION [J].
ELKAREH, AW ;
LEAL, LG .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1989, 33 (03) :257-287
[8]   Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation [J].
Fattal, R ;
Kupferman, R .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2005, 126 (01) :23-37
[9]   Elastic turbulence in a polymer solution flow [J].
Groisman, A ;
Steinberg, V .
NATURE, 2000, 405 (6782) :53-55
[10]   Efficient mixing at low Reynolds numbers using polymer additives [J].
Groisman, A ;
Steinberg, V .
NATURE, 2001, 410 (6831) :905-908