Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras

被引:78
作者
Yu, Houyi [1 ]
Guo, Li [2 ,3 ]
Thibon, Jean-Yves [4 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[4] Univ Paris Est Marne Vallee, Lab Informat Gaspard Monge, 5 Blvd Descartes, F-77454 Champs Sur Marne 2, Marne La Vallee, France
基金
中国国家自然科学基金;
关键词
Symmetric functions; Quasi-symmetric functions; Weak compositions; Rota-Baxter algebras; Hopf algebras; RENORMALIZATION;
D O I
10.1016/j.aim.2018.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the Hopf algebra of quasi-symmetric functions with semigroup exponents generalizing the Hopf algebra QSym of quasi-symmetric functions. As a special case we obtain the Hopf algebra QSym((N) over tilde) of weak quasi-symmetric functions, which provides a framework for the study of a question proposed by G.-C. Rota relating symmetric type functions and Rota-Baxter algebras. We provide the transformation formulas between the weak monomial and fundamental quasi-symmetric functions, which extends the corresponding results for quasi-symmetric functions. Moreover, we show that QSym is a Hopf subalgebra and a Hopf quotient algebra of QSym((N) over tilde). Rota's question is addressed by identifying QSym((N) over tilde) with the free commutative unitary Rota-Baxter algebra III (x) of weight 1 on one generator x, which also allows us to equip III(x) with a Hopf algebra structure. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
[31]   Cohomologies of relative Rota-Baxter Lie algebras with derivations and applications [J].
Sun, Qinxiu ;
Li, Zhen .
JOURNAL OF GEOMETRY AND PHYSICS, 2024, 195
[32]   Rota-baxter algebras in renormalization of perturbative quantum field theory [J].
Ebrahimi-Fard, Kurusch .
UNIVERSALITY AND RENORMALIZATION: FROM STOCHASTIC EVOLUTION TO RENORMALIZATION OF QUANTUM FIELDS, 2007, 50 :47-105
[33]   Left counital Hopf algebras on bi-decorated planar rooted forests and Rota-Baxter systems [J].
Peng, Xiao-Song ;
Zhang, Yi ;
Gao, Xing ;
Luo, Yan-Feng .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2020, 27 (02) :219-243
[34]   Infinitesimal and B∞-algebras, finite spaces, and quasi-symmetric functions [J].
Foissy, Loic ;
Malvenuto, Claudia ;
Patras, Frederic .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (06) :2434-2458
[36]   Classification of operator extensions, monad liftings and distributive laws for differential algebras and Rota-Baxter algebras [J].
Zhang, Shilong ;
Guo, Li ;
Keigher, William .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (09)
[37]   Polylogarithms and multiple zeta values from free Rota-Baxter algebras [J].
GUO Li ZHANG BinCenter of Mathematical SciencesZhejiang UniversityHangzhou ChinaDepartment of Mathematics and Computer ScienceRutgers UniversityNewarkNJ USAYangtze Center of MathematicsSichuan UniversityChengdu China .
Science China(Mathematics), 2010, 53 (09) :2239-2258
[38]   ROTA-BAXTER OPERATORS ON BIHOM-ASSOCIATIVE ALGEBRAS AND RELATED STRUCTURES [J].
Liu, Ling ;
Makhlouf, Abdenacer ;
Menini, Claudia ;
Panaite, Florin .
COLLOQUIUM MATHEMATICUM, 2020, 161 (02) :263-294
[39]   Polylogarithms and multiple zeta values from free Rota-Baxter algebras [J].
Li Guo ;
Bin Zhang .
Science China Mathematics, 2010, 53 :2239-2258
[40]   Rota-Baxter multiplicative 3-ary Hom-Nambu-Lie algebras [J].
Sun, Bing ;
Chen, Liangyun .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 :400-413