Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras

被引:79
作者
Yu, Houyi [1 ]
Guo, Li [2 ,3 ]
Thibon, Jean-Yves [4 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[4] Univ Paris Est Marne Vallee, Lab Informat Gaspard Monge, 5 Blvd Descartes, F-77454 Champs Sur Marne 2, Marne La Vallee, France
基金
中国国家自然科学基金;
关键词
Symmetric functions; Quasi-symmetric functions; Weak compositions; Rota-Baxter algebras; Hopf algebras; RENORMALIZATION;
D O I
10.1016/j.aim.2018.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the Hopf algebra of quasi-symmetric functions with semigroup exponents generalizing the Hopf algebra QSym of quasi-symmetric functions. As a special case we obtain the Hopf algebra QSym((N) over tilde) of weak quasi-symmetric functions, which provides a framework for the study of a question proposed by G.-C. Rota relating symmetric type functions and Rota-Baxter algebras. We provide the transformation formulas between the weak monomial and fundamental quasi-symmetric functions, which extends the corresponding results for quasi-symmetric functions. Moreover, we show that QSym is a Hopf subalgebra and a Hopf quotient algebra of QSym((N) over tilde). Rota's question is addressed by identifying QSym((N) over tilde) with the free commutative unitary Rota-Baxter algebra III (x) of weight 1 on one generator x, which also allows us to equip III(x) with a Hopf algebra structure. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 38 条
[1]  
Abe E., 1980, HOPF ALGEBRAS
[2]   Structure of the Malvenuto-Reutenauer Hopf algebra of permutations [J].
Aguiar, M ;
Sottile, F .
ADVANCES IN MATHEMATICS, 2005, 191 (02) :225-275
[3]   Pre-Poisson algebras [J].
Aguiar, M .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) :263-277
[4]   Baxter algebras and Hopf algebras [J].
Andrews, GE ;
Guo, L ;
Keigher, W ;
Ono, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (11) :4639-4656
[5]  
[Anonymous], 2015, Oxford Classic Texts in the Physical Sciences
[6]  
[Anonymous], 1972, MEMOIRS AM MATH SOC
[7]   A unified algebraic approach to the classical Yang-Baxter equation [J].
Bai, Chengming .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (36) :11073-11082
[8]   Splitting of Operations, Manin Products, and Rota-Baxter Operators [J].
Bai, Chengming ;
Bellier, Olivia ;
Guo, Li ;
Ni, Xiang .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (03) :485-524
[9]  
Baker A, 2008, MATH SCAND, V103, P208
[10]  
Baxter G., 1960, Pac. J. Math., V10, P731