Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras

被引:77
|
作者
Yu, Houyi [1 ]
Guo, Li [2 ,3 ]
Thibon, Jean-Yves [4 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[4] Univ Paris Est Marne Vallee, Lab Informat Gaspard Monge, 5 Blvd Descartes, F-77454 Champs Sur Marne 2, Marne La Vallee, France
基金
中国国家自然科学基金;
关键词
Symmetric functions; Quasi-symmetric functions; Weak compositions; Rota-Baxter algebras; Hopf algebras; RENORMALIZATION;
D O I
10.1016/j.aim.2018.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the Hopf algebra of quasi-symmetric functions with semigroup exponents generalizing the Hopf algebra QSym of quasi-symmetric functions. As a special case we obtain the Hopf algebra QSym((N) over tilde) of weak quasi-symmetric functions, which provides a framework for the study of a question proposed by G.-C. Rota relating symmetric type functions and Rota-Baxter algebras. We provide the transformation formulas between the weak monomial and fundamental quasi-symmetric functions, which extends the corresponding results for quasi-symmetric functions. Moreover, we show that QSym is a Hopf subalgebra and a Hopf quotient algebra of QSym((N) over tilde). Rota's question is addressed by identifying QSym((N) over tilde) with the free commutative unitary Rota-Baxter algebra III (x) of weight 1 on one generator x, which also allows us to equip III(x) with a Hopf algebra structure. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [1] Rota-Baxter algebras and left weak composition quasi-symmetric functions
    Yu, Houyi
    Guo, Li
    Zhao, Jianqiang
    RAMANUJAN JOURNAL, 2017, 44 (03) : 567 - 596
  • [2] Rota–Baxter algebras and left weak composition quasi-symmetric functions
    Houyi Yu
    Li Guo
    Jianqiang Zhao
    The Ramanujan Journal, 2017, 44 : 567 - 596
  • [3] FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS
    Zhang, Xigou
    Gao, Xing
    Guo, Li
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 12 - 34
  • [4] Construction of Rota-Baxter algebras via Hopf module algebras
    Jian RunQiang
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2321 - 2328
  • [5] Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras
    Zhang, Tianjie
    Gao, Xing
    Guo, Li
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (10)
  • [6] Generating functions from the viewpoint of Rota-Baxter algebras
    Gu, Nancy S. S.
    Guo, Li
    DISCRETE MATHEMATICS, 2015, 338 (04) : 536 - 554
  • [7] From Quantum Quasi-Shuffle Algebras to Braided Rota-Baxter Algebras
    Jian, Run-Qiang
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (08) : 851 - 863
  • [8] Free Lie Rota-Baxter algebras
    Gubarev, V. Yu.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (05) : 809 - 818
  • [9] Localization of Rota-Baxter algebras
    Chu, Chenghao
    Guo, Li
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (02) : 237 - 251
  • [10] Embedding of dendriform algebras into Rota-Baxter algebras
    Gubarev, Vsevolod Yu.
    Kolesnikov, Pavel S.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (02): : 226 - 245