A quantitative result on Sendov's conjecture for a zero near the unit circle

被引:1
|
作者
Chijiwa, Tomohiro [1 ]
机构
[1] Hiroshima Univ, Dept Math, Grad Sch Sci, Hiroshima 7398526, Japan
关键词
Sendov's conjecture; polynomial; zero; critical point; POLYNOMIALS; ILYEFF;
D O I
10.32917/hmj/1314204564
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On Sendov's conjecture, V. Vajaitu and A. Zaharescu (and M. J. Miller, independently) state the following in their paper: if one zero a of a polynomial which has all the zeros in the closed unit disk is sufficiently close to the unit circle, then the distance from a to the closest critical point is less than 1. It is desirable to quantify this assertion. In the author's previous paper, we obtained an upper bound on the radius of the disk centered at the origin which contains all the critical points. In this paper, we improve it, and then, estimate the range of the zero a satisfying the above. This result, moreover, implies that if a zero of a polynomial is close to the unit circle and all the critical points are far from the zero, then the polynomial must be close to P(z) = z(n) - c with vertical bar c vertical bar = 1.
引用
收藏
页码:235 / 273
页数:39
相关论文
共 17 条
  • [1] A result related to the Sendov conjecture
    Dalmasso, Robert
    ANNALES POLONICI MATHEMATICI, 2023, 130 (03) : 193 - 199
  • [2] On Sendov?s conjecture
    Cotirla, Luminita-Ioana
    Szasz, Robert
    FILOMAT, 2023, 37 (16) : 5283 - 5286
  • [3] A quadratic approximation to the Sendov radius near the unit circle
    Miller, MJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (03) : 851 - 873
  • [4] On Sendov's Conjecture
    Sofi, G. M.
    Shah, W. M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 493 - 497
  • [5] On Sendov’s Conjecture
    G. M. Sofi
    W. M. Shah
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 493 - 497
  • [6] Non-Archimedean Sendov’s Conjecture
    Daebeom Choi
    Seewoo Lee
    p-Adic Numbers, Ultrametric Analysis and Applications, 2022, 14 : 77 - 80
  • [7] A quantitative result on polynomials with zeros in the unit disk
    Chijiwa, Tomohiro
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2010, 86 (10) : 165 - 168
  • [8] Sendov's Conjecture: A Note on a Paper of Degot
    Chalebgwa, T. P.
    ANALYSIS MATHEMATICA, 2020, 46 (03) : 447 - 463
  • [9] Non-Archimedean Sendov's Conjecture
    Choi, Daebeom
    Lee, Seewoo
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2022, 14 (01) : 77 - 80
  • [10] ON SENDOV'S CONJECTURE ABOUT CRITICAL POINTS OF A POLYNOMIAL
    Nazir, Ishfaq
    Mir, Mohammad Ibrahim
    Wani, Irfan Ahmad
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 825 - 831