Variational analysis of driven-dissipative bosonic fields

被引:1
作者
Pistorius, Tim [1 ]
Weimer, Hendrik [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; QUANTUM; STATES; DYNAMICS; EQUATION; PHOTONS; QUTIP;
D O I
10.1103/PhysRevA.104.063711
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a method to perform a variational analysis of the quantum master equation for driven-disspative bosonic fields with arbitrary large occupation numbers. Our approach combines the P representation of the density matrix and the variational principle for open quantum system. We benchmark the method by comparing it to wave-function Monte Carlo simulations and the solution of the Maxwell-Bloch equation for the Jaynes-Cummings model. Furthermore, we study a model describing Rydberg polaritons in a cavity field and introduce an additional set of variational parameters to describe correlations between different modes.
引用
收藏
页数:8
相关论文
共 59 条
[1]  
Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/nphys2083, 10.1038/NPHYS2083]
[2]   NONCLASSICAL CHARACTER OF STATES EXHIBITING NO SQUEEZING OR SUB-POISSONIAN STATISTICS [J].
AGARWAL, GS ;
TARA, K .
PHYSICAL REVIEW A, 1992, 46 (01) :485-488
[3]   Photon-Mediated Interactions: A Scalable Tool to Create and Sustain Entangled States of N Atoms [J].
Aron, Camille ;
Kulkarni, Manas ;
Tuereci, Hakan E. .
PHYSICAL REVIEW X, 2016, 6 (01)
[4]   Statistics of photon-subtracted and photon-added states [J].
Barnett, Stephen M. ;
Ferenczi, Gergely ;
Gilson, Claire R. ;
Speirits, Fiona C. .
PHYSICAL REVIEW A, 2018, 98 (01)
[5]   MINIMUM UNCERTAINTY STATES FOR AMPLITUDE-SQUARED SQUEEZING - HERMITE POLYNOMIAL STATES [J].
BERGOU, JA ;
HILLERY, M ;
YU, DQ .
PHYSICAL REVIEW A, 1991, 43 (01) :515-520
[6]   Two photon conditional phase gate based on Rydberg slow light polaritons [J].
Bienias, Przemyslaw ;
Buechler, Hans Peter .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (05)
[7]   Probing nonclassicality with matrices of phase-space distributions [J].
Bohmann, Martin ;
Agudelo, Elizabeth ;
Sperling, Jan .
QUANTUM, 2020, 4
[8]   CONDITIONS FOR EXISTENCE OF A DIAGONAL REPRESENTATION FOR QUANTUM MECHANICAL OPERATORS [J].
BONIFACIO, R ;
NARDUCCI, LM ;
MONTALDI, E .
PHYSICAL REVIEW LETTERS, 1966, 16 (24) :1125-+
[9]  
Breuer H.-P., 2002, The Theory of Open Quantum Systems
[10]   Generalized delta functions and their use in quantum optics [J].
Brewster, R. A. ;
Franson, J. D. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)