Spontaneous Generated Convective Anticyclones at Low Latitude-A Model for the Great Red Spot

被引:2
作者
Cai, Tao [1 ]
Chan, Kwing L. [1 ,2 ]
Chow, Kim-Chiu [1 ]
机构
[1] Macau Univ Sci & Technol, State Key Lab Lunar & Planetary Sci, Macau, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat & Technol, Macau, Peoples R China
关键词
TURBULENT COMPRESSIBLE CONVECTION; ROTATING CONVECTION; NUMERICAL-SIMULATION; DEEP ATMOSPHERE; VORTICES; EVOLUTION; JUPITER; NUMBER; JETS; TIME;
D O I
10.3847/1538-4357/ac3b4b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Great Red Spot (GRS) at about latitude 22 degrees S of Jupiter has been observed for hundreds of years, yet the driving mechanism of the formation of this giant anticyclone still remains unclear. Two scenarios were proposed to explain its formation. One is a shallow model suggesting that it might be a weather feature formed through a merging process of small shallow storms generated by moist convection, while the other is a deep model suggesting that it might be a deeply rooted anticyclone powered by the internal heat of Jupiter. In this work, we present numerical simulations showing that the GRS could be naturally generated in a deep rotating turbulent flow and can survive for a long time, when the convective Rossby number is smaller than a certain critical value. From this critical value, we predict that the Great Red Spot extends to at least about 500 km deep into the Jovian atmosphere. Our results demonstrate that the Great Red Spot is likely to be a feature deep-seated in the Jovian atmosphere.
引用
收藏
页数:15
相关论文
共 70 条
[1]   Two-Year Observations of the Jupiter Polar Regions by JIRAM on Board Juno [J].
Adriani, A. ;
Bracco, A. ;
Grassi, D. ;
Moriconi, M. L. ;
Mura, A. ;
Orton, G. ;
Altieri, F. ;
Ingersoll, A. ;
Atreya, S. K. ;
Lunine, J. I. ;
Migliorini, A. ;
Noschese, R. ;
Cicchetti, A. ;
Sordini, R. ;
Tosi, F. ;
Sindoni, G. ;
Plainaki, C. ;
Dinelli, B. M. ;
Turrini, D. ;
Filacchione, G. ;
Piccioni, G. ;
Bolton, S. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (06)
[2]   Clusters of cyclones encircling Jupiter's poles [J].
Adriani, A. ;
Mura, A. ;
Orton, G. ;
Hansen, C. ;
Altieri, F. ;
Moriconi, M. L. ;
Rogers, J. ;
Eichstaedt, G. ;
Momary, T. ;
Ingersoll, A. P. ;
Filacchione, G. ;
Sindoni, G. ;
Tabataba-Vakili, F. ;
Dinelli, B. M. ;
Fabiano, F. ;
Bolton, S. J. ;
Connerney, J. E. P. ;
Atreya, S. K. ;
Lunine, J. I. ;
Tosi, F. ;
Migliorini, A. ;
Grassi, D. ;
Piccioni, G. ;
Noschese, R. ;
Cicchetti, A. ;
Plainaki, C. ;
Olivieri, A. ;
O'Neill, M. E. ;
Turrini, D. ;
Stefani, S. ;
Sordini, R. ;
Amoroso, M. .
NATURE, 2018, 555 (7695) :216-+
[3]   THE MAGNETIC FURNACE: INTENSE CORE DYNAMOS IN B STARS [J].
Augustson, Kyle C. ;
Brun, Allan Sacha ;
Toomre, Juri .
ASTROPHYSICAL JOURNAL, 2016, 829 (02)
[4]   Rotating convective turbulence in Earth and planetary cores [J].
Aurnou, J. M. ;
Calkins, M. A. ;
Cheng, J. S. ;
Julien, K. ;
King, E. M. ;
Nieves, D. ;
Soderlund, K. M. ;
Stellmach, S. .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2015, 246 :52-71
[5]   Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection transport scalings [J].
Aurnou, Jonathan M. ;
Horn, Susanne ;
Julien, Keith .
PHYSICAL REVIEW RESEARCH, 2020, 2 (04)
[6]  
Bohm-Vitense E., 1958, ZAP, V46, P108
[7]   Microwave observations reveal the deep extent and structure of Jupiter's atmospheric vortices [J].
Bolton, S. J. ;
Levin, S. M. ;
Guillot, T. ;
Li, C. ;
Kaspi, Y. ;
Orton, G. ;
Wong, M. H. ;
Oyafuso, F. ;
Allison, M. ;
Arballo, J. ;
Atreya, S. ;
Becker, H. N. ;
Bloxham, J. ;
Brown, S. T. ;
Fletcher, L. N. ;
Galanti, E. ;
Gulkis, S. ;
Janssen, M. ;
Ingersoll, A. ;
Lunine, J. L. ;
Misra, S. ;
Steffes, P. ;
Stevenson, D. ;
Waite, J. H. ;
Yadav, R. K. ;
Zhang, Z. .
SCIENCE, 2021, 374 (6570) :968-+
[8]   EXPERIMENTAL-STUDY OF CONVECTIVE STRUCTURES IN ROTATING FLUIDS [J].
BOUBNOV, BM ;
GOLITSYN, GS .
JOURNAL OF FLUID MECHANICS, 1986, 167 :503-531
[9]   Penetration and overshooting in turbulent compressible convection [J].
Brummell, NH ;
Clune, TL ;
Toomre, J .
ASTROPHYSICAL JOURNAL, 2002, 570 (02) :825-854
[10]   SIMPLE MODEL OF CONVECTION IN JOVIAN ATMOSPHERE [J].
BUSSE, FH .
ICARUS, 1976, 29 (02) :255-260