First, we shall prove that a compact connected oriented locally conformally flat n-dimensional Riemannian manifold with constant scalar curvature is isometric to a space form or a Riemannian product Sn-1(c) x S-1 if its Ricci curvature is nonnegative. Second, we shall give a topological classification of compact connected oriented locally conformally flat n-dimensional Riemannian manifolds with nonnegative scalar curvature r if the following inequality is satisfied: Sigma (i,j) R-ij(2) less than or equal to r(2)/(n - 1), where Sigma (i,j) R-ij(2) is the squared norm of the Ricci curvature tensor.
机构:
Univ Santiago de Compostela, Fac Matemat, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Fac Matemat, Santiago De Compostela 15782, Spain
Brozos-Vazquez, Miguel
论文数: 引用数:
h-index:
机构:
Garcia-Rio, Eduardo
Vazquez-Lorenzo, Ramon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Fac Matemat, Santiago De Compostela 15782, Spain