Compact locally conformally flat Riemannian manifolds

被引:26
作者
Cheng, QM [1 ]
机构
[1] Josai Univ, Dept Math, Fac Sci, Sakado, Saitama 3500295, Japan
关键词
D O I
10.1017/S0024609301008074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we shall prove that a compact connected oriented locally conformally flat n-dimensional Riemannian manifold with constant scalar curvature is isometric to a space form or a Riemannian product Sn-1(c) x S-1 if its Ricci curvature is nonnegative. Second, we shall give a topological classification of compact connected oriented locally conformally flat n-dimensional Riemannian manifolds with nonnegative scalar curvature r if the following inequality is satisfied: Sigma (i,j) R-ij(2) less than or equal to r(2)/(n - 1), where Sigma (i,j) R-ij(2) is the squared norm of the Ricci curvature tensor.
引用
收藏
页码:459 / 465
页数:7
相关论文
共 18 条
[1]  
Aubin T., 1970, J DIFFER GEOM, V4, P385
[2]  
Chen B. Y., 1973, GEOMETRY SUBMANIFOLD
[3]  
CHEN YL, 1992, CHUNG HUA CHENG HSIN, V8, P54
[4]   Conformally flat 3-manifolds with constant scalar curvature [J].
Cheng, QM ;
Ishikawa, S ;
Shiohama, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1999, 51 (01) :209-226
[5]  
CHENG QM, IN PRESS JAPAN J MAT
[6]  
Goldberg S.I., 1969, KODAI MATH SEM REP, V21, P226, DOI DOI 10.2996/KMJ/1138845885
[7]  
Goldberg S.I., 1962, Curvature and homology
[9]   ON CONFORMALLY-FLAT SPACES IN THE LARGE [J].
KUIPER, NH .
ANNALS OF MATHEMATICS, 1949, 50 (04) :916-924
[10]   ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS [J].
OMORI, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (02) :205-+