Can diffuse-interface models quantitatively describe moving contact lines?
被引:54
作者:
Yue, P.
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USAVirginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
Yue, P.
[1
]
Feng, J. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, CanadaVirginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
Feng, J. J.
[2
,3
]
机构:
[1] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
[2] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
The three-phase contact line is a long-standing problem in the physics and hydrodynamics of interfaces. The traditional sharp-interface Navier-Stokes formulation encounters a non-integrable stress singularity, which is commonly avoided by introducing slip at the contact line. In recent years, diffuse-interface models have emerged as an alternative method. They are attractive in regularizing the singularity in a more rational manner, and in the meantime supplying a means for describing the interfacial motion on the large scale. Although a number of groups have carried out diffuse-interface computations of moving contact lines, a closer inspection shows that some fundamental questions remain to be answered. For example, how can a sharp-interface limit be realized to produce a solution that is independent of the interfacial thickness? How to determine model parameters so as to match a specific experiment? Finally, is it possible to make quantitatively accurate predictions of the moving contact line using diffuse-interface models? Using the Cahn-Hilliard model as an example, we describe these issues and suggest solutions.
机构:
Univ Maryland, Dept Math, College Pk, MD 20742 USA
Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USAUniv Maryland, Dept Math, College Pk, MD 20742 USA
Nochetto, Ricardo H.
Salgado, Abner J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Math, College Pk, MD 20742 USAUniv Maryland, Dept Math, College Pk, MD 20742 USA
Salgado, Abner J.
Walker, Shawn W.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USAUniv Maryland, Dept Math, College Pk, MD 20742 USA
机构:
Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USAVirginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
Yue, Pengtao
Zhou, Chunfeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Biol & Chem Engn, Vancouver, BC V6T 1Z3, CanadaVirginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
Zhou, Chunfeng
Feng, James J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, CanadaVirginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Univ Calif San Diego, NSF Ctr Theoret Biol Phys, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Li, Bo
Zhao, Yanxiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Univ Calif San Diego, NSF Ctr Theoret Biol Phys, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA