A CHARATERIZATION OF COMMUTATORS FOR PARABOLIC SINGULAR INTEGRALS

被引:1
|
作者
Chen, Yanping [2 ]
Ding, Yong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst BNU, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Sci & Technol Beijing, Appl Sci Sch, Beijing 100083, Peoples R China
关键词
SPACES; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors give a characterization of the L(P)-boundedness of the commutators for the parabolic singular integrals. More precisely, the authors prove that if b is an element of BMO(phi)(R(n), rho), then the commutator [b, T] is a bounded operator from L(P) (R(n)) to the Orlicz space L(psi)(R(n)), where the kernel function Omega has no any smoothness on the unit sphere S(n-1). Conversely, if assuming on Omega a slight smoothness on S(n-1), then the boundedness of [b,T] from L(P)(R(n)) to L(psi)(R(n)) implies that b is an element of BMO(phi)(R(n), p). The results in this paper improve essentially and extend some known conclusions.
引用
收藏
页码:5 / 25
页数:21
相关论文
共 50 条
  • [31] Lp(Rn) boundedness for higher commutators of singular integrals with rough kernels belonging to certain block spaces
    Hou, Yanyan
    Tang, Lin
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (05) : 713 - 725
  • [32] On Local Properties of Singular Integrals
    Mamedkhanov, J. I.
    Jafarov, S. Z.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (5) : 703 - 718
  • [33] Vector-valued multilinear singular integrals with nonsmooth kernels and commutators on generalized weighted Morrey space
    Zhao, Nan
    Zhou, Jiang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [34] Commutators of Singular Integrals with Kernels Satisfying Generalized Hormander Conditions and Extrapolation Results to the Variable Exponent Spaces
    Melchiori, Luciana
    Pradolini, Gladis
    POTENTIAL ANALYSIS, 2019, 51 (04) : 579 - 601
  • [35] The boundedness for commutators of a class of maximal hypersingular integrals with variable kernels
    Chen, Yanping
    Ding, Yong
    Li, Ran
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (15) : 4918 - 4940
  • [36] WEIGHTED LIPSCHITZ ESTIMATES FOR COMMUTATORS OF FRACTIONAL INTEGRALS WITH HOMOGENEOUS KERNELS
    Lin, Yan
    Liu, Zongguang
    Pan, Guixia
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2689 - 2700
  • [37] Rough singular integrals supported on submanifolds
    Chen, Yanping
    Ding, Yong
    Liu, Honghai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (02) : 677 - 691
  • [38] WEIGHTED ESTIMATES FOR VECTOR-VALUED COMMUTATORS OF GENERALIZED FRACTIONAL INTEGRALS
    Chen, Jiecheng
    Yu, Xiao
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1299 - 1320
  • [39] Multiple singular integrals and Marcinkiewicz integrals with mixed homogeneity along surfaces
    Liu, Feng
    Wu, Huoxiong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [40] HARDY TYPE ESTIMATES FOR COMMUTATORS OF FRACTIONAL INTEGRALS
    Wang, Yueshan
    He, Yuexiang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (01) : 319 - 335