On exact solutions of a class of fractional Euler-Lagrange equations

被引:97
作者
Baleanu, Dumitru [1 ]
Trujillo, Juan J. [2 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Univ La Laguna, Dept Anal Matemat, Tenerife 38271, Spain
关键词
fractional calculus; differential equations of fractional order; fractional variational calculus;
D O I
10.1007/s11071-007-9281-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where D-c(a)t(alpha) x(t)) and 0 < alpha < 1, such that the following is the corresponding Euler-Lagrange D-t(b)alpha(D-c(a)t(alpha))x(t) + b(t, x(t)) ((c)(a)D(t)(alpha)x(t)) + f(t, x(t)) = 0. (1) At last, exact solutions for some Euler-Lagrange equations are presented. In particular, we consider the following equations D-t(b)alpha(D-c(a)t(alpha))x(t) = lambda x(t) (lambda is an element of R), (2) D-t(b)alpha(D-c(a)t(alpha))x(t) + g(t) D-c(a)t(alpha) x(t) = f(t), (3) where g(t) and f (t) are suitable functions.
引用
收藏
页码:331 / 335
页数:5
相关论文
共 26 条
[1]   Fractional variational calculus and the transversality conditions [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33) :10375-10384
[2]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[3]  
AGRAWAL OP, 2007, IN PRESS J VIB CONTR
[4]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[5]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[6]   Fractional Hamiltonian analysis of irregular systems [J].
Baleanu, Dumitru .
SIGNAL PROCESSING, 2006, 86 (10) :2632-2636
[7]  
ELNABULSI RA, 2005, FIZIKA A, V14, P289
[8]   Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor's series of nondifferentiable functions [J].
Jumarie, Guy .
CHAOS SOLITONS & FRACTALS, 2007, 32 (03) :969-987
[9]  
Kilbas AA., 2006, Theory and Applications of Fractional Differential Equations, VVol. 204, DOI DOI 10.1016/S0304-0208(06)80001-0