Advances in Artificial Neural Networks for Electromagnetic Parameterized Modeling

被引:0
|
作者
Zhang, Qi-Jun [1 ]
Feng, Feng [2 ]
Na, Weicong [3 ]
机构
[1] Carleton Univ, Dept Elect, Ottawa, ON, Canada
[2] Tianjin Univ, Sch Microelect, Tianjin, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
来源
2021 13TH GLOBAL SYMPOSIUM ON MILLIMETER-WAVES & TERAHERTZ (GSMM) | 2021年
基金
中国国家自然科学基金;
关键词
artificial neural networks; deep neural networks; EM parameterized modeling; forward modeling; inverse modeling; knowledge-based neural networks; neuro-transfer functions;
D O I
10.1109/GSMM53250.2021.9512007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electromagnetic (EM) parameterized modeling is important for EM repetitive analysis, such as EM optimization, what if analysis, and yield optimization. An overview of advances in artificial neural networks (ANNs) for EM parameterized modeling is presented in this paper, covering forward/inverse modeling, deep neural networks, knowledge-based neural networks, neuro-transfer functions, and applications for fast EM modeling with varying values in geometrical parameters.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Modeling Axonal Plasticity in Artificial Neural Networks
    Ryland, James
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1119 - 1146
  • [22] THE ARTIFICIAL NEURAL NETWORKS AND THE DRYING PROCESS MODELING
    JINESCU, G
    LAVRIC, V
    DRYING TECHNOLOGY, 1995, 13 (5-7) : 1579 - 1586
  • [23] Modeling soil collapse by artificial neural networks
    Basma A.A.
    Kallas N.
    Geotechnical & Geological Engineering, 2004, 22 (3) : 427 - 438
  • [24] Modeling Axonal Plasticity in Artificial Neural Networks
    James Ryland
    Neural Processing Letters, 2021, 53 : 1119 - 1146
  • [25] A regression modeling method of the artificial neural networks
    Li, P
    Mu, XF
    ELECTRONIC IMAGING AND MULTIMEDIA SYSTEMS II, 1998, 3561 : 398 - 402
  • [26] Modeling of pain using artificial neural networks
    Haeri, M
    Asemani, D
    Gharibzadeh, S
    JOURNAL OF THEORETICAL BIOLOGY, 2003, 220 (03) : 277 - 284
  • [27] Transient Electromagnetic Monitoring of Permafrost: Mathematical Modeling Based on Sumudu Integral Transform and Artificial Neural Networks
    Glinskikh, Viacheslav
    Nechaev, Oleg
    Mikhaylov, Igor
    Nikitenko, Marina
    Danilovskiy, Kirill
    MATHEMATICS, 2024, 12 (04)
  • [28] Transient electromagnetic modeling using recurrent neural networks
    Sharma, H
    Zhang, QJ
    2005 IEEE MTT-S International Microwave Symposium, Vols 1-4, 2005, : 1597 - 1600
  • [29] DESIGN OPTIMIZATION OF ELECTROMAGNETIC DEVICES USING ARTIFICIAL NEURAL NETWORKS
    MOHAMMED, OA
    PARK, DC
    ULER, FG
    CHEN, ZQ
    IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (05) : 2805 - 2807
  • [30] Prediction of Electromagnetic Measurement Values Using Artificial Neural Networks
    Sakaci, Furkan Hasan
    Cerezci, Osman
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,