Application of Low-Cost UASs and Digital Photogrammetry for High-Resolution Snow Depth Mapping in the Arctic

被引:39
作者
Cimoli, Emiliano [1 ,2 ]
Marcer, Marco [1 ,3 ]
Vandecrux, Baptiste [1 ,4 ]
Boggild, Carl E. [1 ]
Williams, Guy [2 ,5 ]
Simonsen, Sebastian B. [6 ]
机构
[1] Tech Univ Denmark, Arctic Technol Ctr, DK-2800 Lyngby, Denmark
[2] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia
[3] Univ Grenoble Alpes, Inst Geog Alpine, F-3800 Grenoble, France
[4] Geol Survey Denmark & Greenland, DK-1350 Copenhagen K, Denmark
[5] Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas 7001, Australia
[6] Tech Univ Denmark, DTU Space, Dept Geodynam, DK-2800 Lyngby, Denmark
关键词
snow; snow mapping; snow depth; Arctic; remote sensing; UAS; digital photogrammetry; Structure from Motion; STRUCTURE-FROM-MOTION; SCALE SPATIAL VARIABILITY; ALPINE TERRAIN; WINTER; UAV; RECONSTRUCTION; CLIMATE; IMAGERY; MODELS; COVER;
D O I
10.3390/rs9111144
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The repeat acquisition of high-resolution snow depth measurements has important research and civil applications in the Arctic. Currently the surveying methods for capturing the high spatial and temporal variability of the snowpack are expensive, in particular for small areal extents. An alternative methodology based on Unmanned Aerial Systems (UASs) and digital photogrammetry was tested over varying surveying conditions in the Arctic employing two diverse and low-cost UAS-camera combinations (500 and 1700 USD, respectively). Six areas, two in Svalbard and four in Greenland, were mapped covering from 1386 to 38,410 m(2). The sites presented diverse snow surface types, underlying topography and light conditions in order to test the method under potentially limiting conditions. The resulting snow depth maps achieved spatial resolutions between 0.06 and 0.09 m. The average difference between UAS-estimated and measured snow depth, checked with conventional snow probing, ranged from 0.015 to 0.16 m. The impact of image pre-processing was explored, improving point cloud density and accuracy for different image qualities and snow/light conditions. Our UAS photogrammetry results are expected to be scalable to larger areal extents. While further validation is needed, with the inclusion of extra validation points, the study showcases the potential of this cost-effective methodology for high-resolution monitoring of snow dynamics in the Arctic and beyond.
引用
收藏
页数:29
相关论文
共 50 条
[1]  
[Anonymous], ENABLING SCI USE UNM
[2]  
Avanzi F, 2017, CRYOSPHERE DISCUSS, P1, DOI [10.5194/tc-2017-57, DOI 10.5194/TC-2017-57]
[3]   Calibration of Action Cameras for Photogrammetric Purposes [J].
Balletti, Caterina ;
Guerra, Francesco ;
Tsioukas, Vassilios ;
Vernier, Paolo .
SENSORS, 2014, 14 (09) :17471-17490
[4]   Potential impacts of a warming climate on water availability in snow-dominated regions [J].
Barnett, TP ;
Adam, JC ;
Lettenmaier, DP .
NATURE, 2005, 438 (7066) :303-309
[5]   Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation [J].
Benassi, Francesco ;
Dall'Asta, Elisa ;
Diotri, Fabrizio ;
Forlani, Gianfranco ;
di Cella, Umberto Morra ;
Roncella, Riccardo ;
Santise, Marina .
REMOTE SENSING, 2017, 9 (02)
[6]   Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts [J].
Bokhorst, Stef ;
Pedersen, Stine Hojlund ;
Brucker, Ludovic ;
Anisimov, Oleg ;
Bjerke, Jarle W. ;
Brown, Ross D. ;
Ehrich, Dorothee ;
Essery, Richard L. H. ;
Heilig, Achim ;
Ingvander, Susanne ;
Johansson, Cecilia ;
Johansson, Margareta ;
Jonsdottir, Ingibjorg Svala ;
Inga, Niila ;
Luojus, Kari ;
Macelloni, Giovanni ;
Mariash, Heather ;
McLennan, Donald ;
Rosqvist, Gunhild Ninis ;
Sato, Atsushi ;
Savela, Hannele ;
Schneebeli, Martin ;
Sokolov, Aleksandr ;
Sokratov, Sergey A. ;
Terzago, Silvia ;
Vikhamar-Schuler, Dagrun ;
Williamson, Scott ;
Qiu, Yubao ;
Callaghan, Terry V. .
AMBIO, 2016, 45 (05) :516-537
[7]   Photogrammetric reconstruction of homogenous snow surfaces in alpine terrain applying near- infrared UAS imagery [J].
Buehler, Yves ;
Adams, Marc S. ;
Stoffel, Andreas ;
Boesch, Ruedi .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (8-10) :3135-3158
[8]   Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations [J].
Buhler, Yves ;
Adams, Marc S. ;
Bosch, Ruedi ;
Stoffel, Andreas .
CRYOSPHERE, 2016, 10 (03) :1075-1088
[9]   The Changing Face of Arctic Snow Cover: A Synthesis of Observed and Projected Changes [J].
Callaghan, Terry V. ;
Johansson, Margareta ;
Brown, Ross D. ;
Groisman, Pavel Ya ;
Labba, Niklas ;
Radionov, Vladimir ;
Barry, Roger G. ;
Bulygina, Olga N. ;
Essery, Richard L. H. ;
Frolov, D. M. ;
Golubev, Vladimir N. ;
Grenfell, Thomas C. ;
Petrushina, Marina N. ;
Razuvaev, Vyacheslav N. ;
Robinson, David A. ;
Romanov, Peter ;
Shindell, Drew ;
Shmakin, Andrey B. ;
Sokratov, Sergey A. ;
Warren, Stephen ;
Yang, Daquing .
AMBIO, 2011, 40 :17-31
[10]   Characterizing the sea ice algae chlorophyll a-snow depth relationship over Arctic spring melt using transmitted irradiance [J].
Campbell, K. ;
Mundy, C. J. ;
Barber, D. G. ;
Gosselin, M. .
JOURNAL OF MARINE SYSTEMS, 2015, 147 :76-84