Amphiphilic Copolymer Coatings via Plasma Polymerisation Process: Switching and Anti-Biofouling Characteristics

被引:28
作者
Kumar, Virendra [1 ,2 ]
Pulpytel, Jerome [1 ]
Giudetti, Guido [3 ]
Rauscher, Hubert [3 ]
Rossi, Francois [3 ]
Arefi-Khonsari, Farzaneh [1 ]
机构
[1] Univ Paris 06, ENSCP, Lab Genie Proc Plasmas & Traitements Surface, F-75231 Paris, France
[2] Bhabha Atom Res Ctr, Radiat Technol Dev Div, Bombay 400085, Maharashtra, India
[3] Commiss European Communities, Joint Res Ctr, Inst Hlth & Consumer Protect, I-21020 Ispra, Italy
关键词
amphiphilic; anti-biofouling; FT-IR; plasma copolymerisation; protein; switching; PROTEIN-ADSORPTION; BLOCK-COPOLYMERS; SURFACE; FILMS; CELL; DEPOSITION; NETWORKS; ADHESION; FREQUENCY; OXIDE;
D O I
10.1002/ppap.201000109
中图分类号
O59 [应用物理学];
学科分类号
摘要
Environmentally benign-solvent free plasma process is employed to produce nanostructured PFDA-co-DEGDME amphiphilic coatings via plasma co-polymerisation of 1H,1H,2H,2H-perfluorodecyl acrylate (PFDA) and diethyleneglycol dimethyl ether (DEGDME) precursors in a low pressure-RF-inductively excited tubular plasma reactor using argon as a carrier gas. The plasma-polymerised coatings are characterised by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and contact angle measurements. PFDA-co-DEGDME coatings with varying chemical environments and morphologies are achieved by varying the plasma parameters such as, continuous wave (CW) and pulse modulated (PM) plasma mode, and plasma deposition time. Plasma polymerised PFDA-co-DEGDME coatings are found to exhibit a switching property in terms of wettability, i.e., from hydrophobic to hydrophilic and vice versa, in response to the contacting environment. Quartz crystal microbalance (QCM) is used to study the adhesion of two model proteins, namely, human serum albumin (HSA) and fibrinogen (FGN) in continuous flow conditions, which reveals the protein repellent, i.e., anti-biofouling characteristics of the PFDA-co-DEGDME amphiphilic coatings.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 50 条
  • [31] Zwitterionic Phenyl Layers: Finally, Stable, Anti-Biofouling Coatings that Do Not Passivate Electrodes
    Gui, Alicia L.
    Luais, Erwann
    Peterson, Joshua R.
    Gooding, J. Justin
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) : 4827 - 4835
  • [32] Superior corrosion resistance and anti-biofouling performance via electrodeposited graphene oxide/silane composite coating with special wettability
    He, Zihao
    Cao, Huaijie
    Zhou, Miaomiao
    Jia, Wenhu
    Shen, Xixun
    Min, Yulin
    Xu, Qunjie
    SURFACE & COATINGS TECHNOLOGY, 2022, 449
  • [33] Fabrication of an Anti-Biofouling Plasma-Filtration Membrane by an Electrospinning Process Using Photo-Cross-linkable Zwitterionic Phospholipid Polymers
    Seo, Jiae
    Seo, Ji-Hun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (23) : 19591 - 19600
  • [34] Fabrication of Anti-biofouling and Antibacterial Polysulfone Membrane Via Impregnation of Silver Nanoparticles
    Ayub, M.
    Naqvi, S. Z. H.
    Ahmad, W.
    Arif, M. M.
    Saqib, K. A.
    Hameed, A.
    Ali, N.
    Ahmad, N.
    JOURNAL OF THE PAKISTAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 50 (02): : 57 - 70
  • [35] Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine
    Zhi, Xuelian
    Li, Pengfei
    Gan, Xucheng
    Zhang, Weiwei
    Shen, Tianjiao
    Yuan, Jiang
    Shen, Jian
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2014, 25 (14-15) : 1619 - 1628
  • [36] Surface modification of a microfiltration membrane for enhanced anti-biofouling capability in wastewater treatment process
    Tse, Leda K.
    Takada, Kazuki
    Jiang, Sunny C.
    JOURNAL OF WATER PROCESS ENGINEERING, 2018, 26 : 55 - 61
  • [37] Noradrenaline-Functionalized Hyperbranched Fluoropolymer-Poly(ethylene glycol) Cross-Linked Networks As Dual-Mode, Anti-Biofouling Coatings
    Imbesi, Philip M.
    Gohad, Neeraj V.
    Eller, Michael J.
    Orihuela, Beatriz
    Rittschof, Dan
    Schweikert, Emile A.
    Mount, Andrew S.
    Wooley, Karen L.
    ACS NANO, 2012, 6 (02) : 1503 - 1512
  • [38] Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterionic cysteine
    Li, Pengfei
    Cai, Xianmei
    Wang, Ding
    Chen, Shuangchun
    Yuan, Jiang
    Li, Li
    Shen, Jian
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 110 : 327 - 332
  • [39] Anti-biofouling and antibacterial surfaces via a multicomponent coating deposited from an up-scalable atmospheric-pressure plasma-assisted CVD process
    Moreno-Couranjou, Maryline
    Mauchauffe, Rodolphe
    Bonot, Sebastien
    Detrembleur, Christophe
    Choquet, Patrick
    JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (04) : 614 - 623
  • [40] Anti-biofouling and functionalizable bioinspired chitosan-based hydrogel coating via surface photo-immobilization
    Xv, Jiesheng
    Li, Haoying
    Zhang, Wenrui
    Lai, Guichao
    Xue, Haoyu
    Zhao, Jianhao
    Tu, Mei
    Zeng, Rong
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2019, 30 (05) : 398 - 414