Gradient estimates for singular fully nonlinear elliptic equations

被引:2
|
作者
Lieberman, Gary M. [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
Singular differential equations; Nonlinear partial differential equations; a priori estimates; CONORMAL DERIVATIVE PROBLEM; REGULARITY;
D O I
10.1016/j.na.2014.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of singular fully nonlinear elliptic equations under suitable natural conditions, with the model equation being Delta u + b(gamma . Du)/d - u + c vertical bar Du vertical bar(2) = f for Lipschitz functions b > 0, c and f, where d denotes distance to the boundary of the domain and gamma is a suitable extension of the interior unit normal. We show that such equations have a unique, globally C-1 solution (without any a priori prescription of boundary data). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:382 / 397
页数:16
相关论文
共 50 条
  • [41] Gradient estimates for nonlinear elliptic double obstacle problems
    Byun, Sun-Sig
    Ryu, Seungjin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)
  • [42] Schauder estimates for nonlocal fully nonlinear equations
    Jin, Tianling
    Xiong, Jingang
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05): : 1375 - 1407
  • [43] A boundary expansion of solutions to nonlinear singular elliptic equations
    Jian, Huaiyu
    Lu, Jian
    Wang, Xu-Jia
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (01) : 9 - 30
  • [44] ON NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER TERM
    Marah, Amine
    Redwane, Hicham
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 385 - 401
  • [45] ON THE DIRICHLET PROBLEM FOR FULLY NONLINEAR ELLIPTIC EQUATIONS ON ANNULI OF METRIC CONES
    Qiu, Chunhui
    Yuan, Rirong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (11) : 5707 - 5730
  • [46] W2, p-estimates for fully nonlinear elliptic equations with oblique boundary conditions
    Byun, Sun-Sig
    Han, Jeongmin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (05) : 2125 - 2150
  • [47] On the Dirichlet problem for a class of fully nonlinear elliptic equations
    Yuan, Rirong
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
  • [48] Pointwise Boundary Differentiability for Fully Nonlinear Elliptic Equations
    Wu, Duan
    Lian, Yuanyuan
    Zhang, Kai
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 258 (01) : 375 - 401
  • [49] LP-estimates for general Nonlinear elliptic equations
    Byun, Sun-Sig
    Wang, Lihe
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) : 3193 - 3221
  • [50] Gradient estimates for a class of quasilinear elliptic equations with measure data
    Fengping Yao
    Chao Zhang
    Shulin Zhou
    Science China Mathematics, 2019, 62 : 1719 - 1730