THERMODYNAMICS-BASED COMPUTATIONAL APPROACH TO Al-Cu ALLOYS: GRAIN REFINEMENT

被引:0
|
作者
Lir, J. H. [1 ]
Promer, C. [2 ]
Jahn, A. [2 ]
Oberdorfer, B. [2 ]
Wurster, S. [3 ]
Martin, F. [4 ]
Schumacher, P. [1 ,2 ]
机构
[1] Univ Leoben, Dept Met, Chair Casting Res, A-8700 Leoben, Austria
[2] Austrian Foundry Res Inst, A-8700 Leoben, Austria
[3] Univ Leoben, Dept Mat Phys, A-8700 Leoben, Austria
[4] Univ Leoben, Dept Phys Met & Mat Testing, A-8700 Leoben, Austria
来源
SHAPE CASTING | 2014年
关键词
Al-Cu alloy; ThermoCalc software; Solute segregation; Growth restriction factors; ALUMINUM-ALLOYS; GROWTH-RESTRICTION; HETEROGENEOUS NUCLEATION; TI-B; SOLIDIFICATION; SIZE; MECHANISMS; PARTICLES; KINETICS; MELTS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To describe the solute effect on grain refinement, the growth restriction factor (Q) in multicomponent multiphase Al alloys has been often evaluated using a simple summation of the Q values of the individual constituents taken from the binary alloy diagram. Such kind of evaluation can lead to mistakes, or completely fail when an intermetallic phase, even in a trace amount, solidifies prior to the primary alpha-Al. A more accurate method to evaluate growth restriction factor (Q(true)) from thermodynamic descriptions is to calculate the initial slope in the development of constitutional supercooling (Delta T) with the phase fraction of the growing solid phase (f(x) ). In this contribution, ThermoCalc software (with TTA15 database) was used to evaluate the Q(true) in a series of Al-Cu based alloys with Ti, Zr and Sc additions. This investigation demonstrates that thermodynamic-based alloy design can provide a significant tool to develop novel Al alloys.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 50 条
  • [31] Interfacial stability of θ′/Al in Al-Cu alloys
    Kim, Kyoungdoc
    Zhou, Bi-Cheng
    Wolverton, C.
    SCRIPTA MATERIALIA, 2019, 159 : 99 - 103
  • [32] First stages of grain coarsening in semi-solid Al-Cu alloys
    van Boggelen, JWK
    Eskin, DG
    Katgerman, L
    SCRIPTA MATERIALIA, 2003, 49 (07) : 717 - 722
  • [33] Microplasma oxidation of Al-Cu alloys
    Moskovskij Inst Stali i Splavov, Moscow, Russia
    Zashchita Metallov, 1995, 31 (05): : 523 - 531
  • [34] Thermodynamics of Phase Formation in Mg-Al-C Alloys Applied to Grain Refinement
    Deffrennes, G.
    Gardiola, B.
    Lomello, M.
    Andrieux, J.
    Dezellus, O.
    Schmid-Fetzer, R.
    MAGNESIUM TECHNOLOGY 2018, 2018, : 323 - 327
  • [35] MICROPLASMA OXIDATION OF AL-CU ALLOYS
    TIMOSHENKO, AV
    MAGUROVA, YV
    PROTECTION OF METALS, 1995, 31 (05): : 474 - 481
  • [36] RECRYSTALLIZATION OF HETEROGENEOUS AL-CU ALLOYS
    POLESYA, AF
    PASALSKI.VM
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1969, 28 (04): : 91 - &
  • [37] THE SEQUENCE OF PHASES IN AL-CU ALLOYS
    WU, TB
    MATSUBARA, E
    COHEN, JB
    SCRIPTA METALLURGICA, 1983, 17 (04): : 559 - 562
  • [38] EXAFS STUDIES ON AL-CU ALLOYS
    FONTAINE, A
    LAGARDE, P
    NAUDON, A
    RAOUX, D
    SPANJAARD, D
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1979, 40 (01): : 17 - 30
  • [39] The assisted nucleation of θ Al-Cu alloys
    Gable, Brian M.
    Bourgeois, Laure
    Nie, Jiari-Feng
    Muddle, Barry C.
    Solid-Solid Phase Transformations in Inorganic Materials 2005, Vol 1, 2005, : 35 - 40
  • [40] STUDY ON MICROSEGREGATION IN AL-CU ALLOYS
    MORI, N
    OGI, K
    MATSUDA, K
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1976, 40 (12) : 1276 - 1283