Role of structural and functional elements of mouse methionine-S-sulfoxide reductase in its subcellular distribution

被引:73
作者
Kim, HY [1 ]
Gladyshev, VN [1 ]
机构
[1] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA
关键词
D O I
10.1021/bi0501131
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidized forms of methionine residues in proteins can be repaired by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). In mammals, three MsrBs are present, which are targeted to various subcellular compartments. In contrast, only a single mammalian MsrA gene is known whose products have been detected in both cytosol and mitochondria. Factors that determine the location of the protein in these compartments are not known. Here, we found that MsrA was present in cytosol, nucleus, and mitochondria in mouse cells and tissues and that the major enzyme forms detected in various compartments were generated from a single-translation product rather than by alternative translation initiation. Both cytosolic and mitochondrial forms were processed with respect to the N-terminal signal peptide, and the distribution of the protein occurred post-translationally. Deletion of amino acids 69-108 69-83, 84-108, or 217-233, which contained elements important for MsrA structure and function, led to exclusive mitochondrial location of MsrA, whereas a region that affected substrate binding Z, but was not part of the overall fold had no influence on the subcellular distribution. The data suggested that proper structure-function organization of MsrA played a role in subcellular distribution of this protein in mouse cells. These findings were recapitulated by expressing various forms of mouse Msi-A in Soccharomyces cerevisiae, suggesting conservation of the mechanisms responsible for distribution of the mammalian enzyme among different cellular compartments.
引用
收藏
页码:8059 / 8067
页数:9
相关论文
共 37 条
[1]   Dual targeting of cytochrome P4502B1 to endoplasmic reticulum and mitochondria involves a novel signal activation by cyclic AMP-dependent phosphorylation at Ser128 [J].
Anandatheerthavarada, HK ;
Biswas, G ;
Mullick, J ;
Sepuri, NBV ;
Otvos, L ;
Pain, D ;
Avadhani, NG .
EMBO JOURNAL, 1999, 18 (20) :5494-5504
[2]   Kinetic characterization of the chemical steps involved in the catalytic mechanism of methionine sulfoxide reductase a from Neisseria meningitidis [J].
Antoine, M ;
Boschi-Muller, S ;
Branlant, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (46) :45352-45357
[3]   E-coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide [J].
Boschi-Muller, S ;
Azza, S ;
Branlant, G .
PROTEIN SCIENCE, 2001, 10 (11) :2272-2279
[4]   ENZYMATIC REDUCTION OF PROTEIN-BOUND METHIONINE SULFOXIDE [J].
BROT, N ;
WEISSBACH, L ;
WERTH, J ;
WEISSBACH, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (04) :2155-2158
[5]   BIOCHEMISTRY AND PHYSIOLOGICAL-ROLE OF METHIONINE SULFOXIDE RESIDUES IN PROTEINS [J].
BROT, N ;
WEISSBACH, H .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1983, 223 (01) :271-281
[6]  
DAUM G, 1982, J BIOL CHEM, V257, P3028
[7]   Repair of oxidized proteins - Identification of a new methionine sulfoxide reductase [J].
Grimaud, R ;
Ezraty, B ;
Mitchell, JK ;
Lafitte, D ;
Briand, C ;
Derrick, PJ ;
Barras, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (52) :48915-48920
[8]   A second human methionine sulfoxide reductase (hMSRB2) reducing methionine-R-sulfoxide displays a tissue expression pattern distinct from hMSRB1 [J].
Hansel, A ;
Jung, S ;
Hoshi, T ;
Heinemann, SH .
REDOX REPORT, 2003, 8 (06) :384-388
[9]   Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme-involved in the repair of oxidized proteins [J].
Hansel, A ;
Kuschel, L ;
Hehl, S ;
Lemke, C ;
Agricola, HJ ;
Hoshi, T ;
Heinemann, SH .
FASEB JOURNAL, 2002, 16 (06) :911-+
[10]   Regulation of cell function by methionine oxidation and reduction [J].
Hoshi, T ;
Heinemann, SH .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 531 (01) :1-11