Additive value of epicardial adipose tissue quantification to coronary CT angiography-derived plaque characterization and CT fractional flow reserve for the prediction of lesion-specific ischemia

被引:23
作者
Brandt, Verena [1 ,2 ]
Decker, Josua [1 ,3 ]
Schoepf, U. Joseph [1 ]
Varga-Szemes, Akos [1 ]
Emrich, Tilman [1 ,4 ,5 ]
Aquino, Gilberto [1 ]
Bayer, Richard R., II [1 ]
Carson, Landin [1 ]
Sullivan, Allison [1 ]
Ellis, Lauren [1 ]
Doeberitz, Philipp L. von Knebel [1 ,6 ]
Ebersberger, Ullrich [1 ,7 ,8 ]
Bekeredjian, Raffi [2 ]
Tesche, Christian [1 ,8 ,9 ]
机构
[1] Med Univ South Carolina, Dept Radiol & Radiol Sci, Div Cardiovasc Imaging, Ashley River Tower,25 Courtenay Dr, Charleston, SC 29425 USA
[2] Robert Bosch Krankenhaus, Dept Cardiol & Angiol, Stuttgart, Germany
[3] Univ Hosp Augsburg, Dept Diagnost & Intervent Radiol & Neuroradiol, Augsburg, Germany
[4] Univ Med Ctr Mainz, Dept Diagnost & Intervent Radiol, Mainz, Germany
[5] German Ctr Cardiovasc Res DZHK, Partner Site Rhine Main, Mainz, Germany
[6] Heidelberg Univ, Univ Med Ctr Mannheim, Med Fac Mannheim, Inst Clin Radiol & Nucl Med, Mannheim, Germany
[7] Kardiol MVZ MUnchen Nord, Munich, Germany
[8] Munich Univ Clin, Ludwig Maximilians Univ, Dept Cardiol, Munich, Germany
[9] Clin Augustinum Munich, Dept Cardiol, Munich, Germany
关键词
Computed tomography; Coronary artery disease; Angiography; Epicardial adipose tissue; COMPUTED TOMOGRAPHIC ANGIOGRAPHY; EXPERT CONSENSUS DOCUMENT; FAT; SOCIETY; DISEASE;
D O I
10.1007/s00330-021-08481-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Epicardial adipose tissue (EAT) from coronary CT angiography (CCTA) is strongly associated with coronary artery disease (CAD). We investigated the additive value of EAT volume to coronary plaque quantification and CT-derived fractional flow reserve (CT-FFR) to predict lesion-specific ischemia. Methods Patients (n = 128, 60.6 +/- 10.5 years, 61% male) with suspected CAD who had undergone invasive coronary angiography (ICA) and CCTA were retrospectively analyzed. EAT volume and plaque measures were derived from CCTA using a semi-automatic software approach, while CT-FFR was calculated using a machine learning algorithm. The predictive value and discriminatory power of EAT volume, plaque measures, and CT-FFR to identify ischemic CAD were assessed using invasive FFR as the reference standard. Results Fifty-five of 152 lesions showed ischemic CAD by invasive FFR. EAT volume, CCTA >= 50% stenosis, and CT-FFR were significantly different in lesions with and without hemodynamic significance (all p < 0.05). Multivariate analysis revealed predictive value for lesion-specific ischemia of these parameters: EAT volume (OR 2.93, p = 0.021), CCTA >= 50% (OR 4.56, p = 0.002), and CT-FFR (OR 6.74, p < 0.001). ROC analysis demonstrated incremental discriminatory value with the addition of EAT volume to plaque measures alone (AUC 0.84 vs. 0.62, p < 0.05). CT-FFR (AUC 0.89) showed slightly superior performance over EAT volume with plaque measures (AUC 0.84), however without significant difference (p > 0.05). Conclusions EAT volume is significantly associated with ischemic CAD. The combination of EAT volume with plaque quantification demonstrates a predictive value for lesion-specific ischemia similar to that of CT-FFR. Thus, EAT may aid in the identification of hemodynamically significant coronary stenosis.
引用
收藏
页码:4243 / 4252
页数:10
相关论文
共 49 条
[31]   State-of-the-art-myocardial perfusion stress testing: Static CT perfusion [J].
Mushtaq, Saima ;
Conte, Edoardo ;
Pontone, Gianluca ;
Baggiano, Andrea ;
Nnoni, Andrea A. ;
Formenti, Alberto ;
Mancini, Maria Elisabetta ;
Guglielmo, Marco ;
Muscogiuri, Giuseppe ;
Tanzilli, Alessandra ;
Nicoli, Flavia ;
Bartorelli, Antonio L. ;
Pepi, Mauro ;
Andreini, Daniele .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2020, 14 (04) :294-302
[32]   Epicardial adipose tissue and myocardial ischemia assessed by computed tomography perfusion imaging and invasive fractional flow reserve [J].
Muthalaly, Rahul G. ;
Nerlekar, Nitesh ;
Wong, Dennis T. L. ;
Cameron, James D. ;
Seneviratne, Sujith K. ;
Ko, Brian S. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2017, 11 (01) :46-53
[33]   SCCT 2021 Expert Consensus Document on Coronary Computed Tomographic Angiography: A Report of the Society of Cardiovascular Computed Tomography [J].
Narula, Jagat ;
Chandrashekhar, Y. ;
Ahmadi, Amir ;
Abbara, Suhny ;
Berman, Daniel S. ;
Blankstein, Ron ;
Leipsic, Jonathon ;
Newby, David ;
Nicol, Edward D. ;
Nieman, Koen ;
Shaw, Leslee ;
Villines, Todd C. ;
Williams, Michelle ;
Hecht, Harvey S. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (03) :192-217
[34]   Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond [J].
Pencina, Michael J. ;
D'Agostino, Ralph B., Sr. ;
D'Agostino, Ralph B., Jr. ;
Vasan, Ramachandran S. .
STATISTICS IN MEDICINE, 2008, 27 (02) :157-172
[35]   Vascular-specific epicardial adipose tissue in predicting functional myocardial ischemia for patients with stable chest pain [J].
Shan, Dongkai ;
Wang, Xi ;
Dou, Guanhua ;
Zhang, Wei ;
Jing, Jing ;
He, Bai ;
Li, Yang ;
Chen, Yundai ;
Yang, Junjie .
JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2021, 51 (04) :915-923
[36]   Society of Cardiovascular Computed Tomography / North American Society of Cardiovascular Imaging - Expert Consensus Document on Coronary CT Imaging of Atherosclerotic Plaque [J].
Shaw, Leslee J. ;
Blankstein, Ron ;
Bax, Jeroen J. ;
Ferencik, Maros ;
Bittencourt, Marcio Sommer ;
Min, James K. ;
Berman, Daniel S. ;
Leipsic, Jonathon ;
Villines, Todd C. ;
Dey, Damini ;
Al'Aref, Subhi ;
Williams, Michelle C. ;
Lin, Fay ;
Baskaran, Lohendran ;
Litt, Harold ;
Litmanovich, Diana ;
Cury, Ricardo ;
Gianni, Umberto ;
van den Hoogen, Inge ;
van Rosendael, Alexander R. ;
Budoff, Matthew ;
Chang, Hyuk-Jae ;
Hecht, Harvey E. ;
Feuchtner, Gudrun ;
Ahmadi, Amir ;
Ghoshajra, Brian B. ;
Newby, David ;
Chandrashekhar, Y. S. ;
Narula, Jagat .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (02) :93-109
[37]   Value of Myocardial Perfusion Assessment With Coronary Computed Tomography Angiography in Patients With Recent Acute-Onset Chest Pain [J].
Sorgaard, Mathias H. ;
Linde, Jesper J. ;
Kuhl, J. Tobias ;
Kelbaek, Henning ;
Hove, Jens D. ;
Fornitz, Gitte G. ;
Jorgensen, Tern B. S. ;
Heitmann, Merete ;
Kragelund, Charlotte ;
Hansen, Thomas F. ;
Abdulla, Jawdat ;
Engstrom, Thomas ;
Jensen, Jan S. ;
Wiegandt, Yaffah T. ;
Hasten, Dan E. ;
Kober, Lars, V ;
Kofoed, Klaus F. .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (11) :1611-1621
[38]   Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: A multi-center study and meta-analysis [J].
Tang, Chun Xiang ;
Wang, Yi Ning ;
Zhou, Fan ;
Schoepf, U. Joseph ;
van Assen, Manly ;
Stroud, Robert E. ;
Li, Jian Hua ;
Zhang, Xiao Lei ;
Lu, Meng Jie ;
Zhou, Chang Sheng ;
Zhang, Dai Min ;
Yi, Yan ;
Yan, Jing ;
Lu, Guang Ming ;
Xu, Lei ;
Zhang, Long Jiang .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 116 :90-97
[39]   Machine Learning and Deep Neural Networks Applications in Coronary Flow Assessment The Case of Computed Tomography Fractional Flow Reserve [J].
Tesche, Christian ;
Gray, Hunter N. .
JOURNAL OF THORACIC IMAGING, 2020, 35 :S66-S71
[40]   Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis [J].
Tesche, Christian ;
De Cecco, Carlo N. ;
Caruso, Damiano ;
Baumann, Stefan ;
Renker, Matthias ;
Mangold, Stefanie ;
Dyer, Kevin T. ;
Varga-Szemes, Akos ;
Baquet, Moritz ;
Jochheim, David ;
Ebersberger, Ullrich ;
Bayer, Richard R., II ;
Hoffmann, Ellen ;
Steinberg, Daniel H. ;
Schoepf, U. Joseph .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (03) :199-206