A unified approach to dynamic Hardy-type and Copson-type inequalities

被引:1
作者
Saker, Samir H. [1 ,2 ]
Mahmoud, Ramy R. [3 ,4 ]
Abdo, Khadega R. [3 ,4 ]
Krnic, Mario [5 ]
机构
[1] Galala Univ, Fac Adv Basic Sci, Math Div, Galala New City, Egypt
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Univ Technol & Appl Sci ALRustaq, Rustaq 329, Oman
[4] Fayoum Univ, Fac Sci, Dept Math, Al Fayyum, Egypt
[5] Univ Zagreb, Fac Elect Engn & Comp, Unska 3, Zagreb 10000, Croatia
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2022年 / 174卷
关键词
Hardy inequality; Copson inequality; Holder inequality; Time scales; Chain rule; TIME SCALES; EXTENSIONS;
D O I
10.1016/j.bulsci.2021.103089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish a unified treatment of dynamic Hardy-type and Copson-type inequalities. More precisely, we derive a pair of dynamic inequalities which represent time scales extensions of the corresponding recent relations in the classical real setting. Our main results are derived by virtue of the time scales Holder's inequality, the time scales variant of the Fubini theorem and the time scales power rules of integration. As an application, our results are compared with some previously known results from the literature. (c) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:18
相关论文
共 29 条
  • [1] AGARWAL R. P., 2016, HARDY TYPE INEQUALIT
  • [2] [Anonymous], 1979, CAN MATH BULLETIN, DOI DOI 10.4153/CMB-1979-023-5
  • [3] Beesack P.R., 1980, GEN INEQUALITIES, V2, P151
  • [4] MINKOWSKI AND BECKENBACH-DRESHER INEQUALITIES AND FUNCTIONALS ON TIME SCALES
    Bibi, Rabia
    Bohner, Martin
    Pecaric, Josip
    Varosanec, Sanja
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 299 - 312
  • [5] Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
  • [6] Bohner M., 2016, Multiple Integration on Time Scales: Multivariable Dynamic Ccalculus on Time Scales, P449
  • [7] Unifying inequalities of Hardy, Copson, and others
    Carley, H.
    Johnson, P. D., Jr.
    Mohapatra, R. N.
    [J]. AEQUATIONES MATHEMATICAE, 2015, 89 (03) : 497 - 510
  • [8] SOME INTEGRAL INEQUALITIES
    COPSON, ET
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1976, 75 : 157 - 164
  • [9] Copson ET., 1928, J LOND MATH SOC, V1, P49
  • [10] A Hardy-Type Inequality and Its Applications
    Dubinskii, Yu. A.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 269 (01) : 106 - 126