Liouville type theorems for Hardy-Henon equations with concave nonlinearities

被引:12
|
作者
Dai, Wei [1 ,2 ]
Qin, Guolin [3 ,4 ]
机构
[1] Beihang Univ BUAA, Sch Math & Syst Sci, Beijing 100083, Peoples R China
[2] Univ Paris 13, LAGA, UMR 7539, Paris, France
[3] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
bi-harmonic; concave nonlinearity; Hardy-Henon equations; Liouville theorems; nonnegative solutions; super-harmonic property; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; LOCAL BEHAVIOR; HIGHER-ORDER; CLASSIFICATION;
D O I
10.1002/mana.201800532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the Hardy-Henon equations -Delta u=|x|aupand Delta 2u=|x|aupwith a is an element of R and p is an element of(0,1]. Inspired by Serrin and Zou [25], we prove Liouville theorems for nonnegative solutions to the above Hardy-Henon equations (Theorem 1.1 and Theorem 1.3), that is, the unique nonnegative solution is u equivalent to 0.
引用
收藏
页码:1084 / 1093
页数:10
相关论文
共 50 条
  • [31] Some Liouville theorems for Henon type elliptic equations (vol 262, pg 1705, 2012)
    Wang, Chao
    Ye, Dong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) : 1766 - 1768
  • [32] EXISTENCE AND UNIQUENESS OF RADIAL SOLUTIONS FOR HARDY-HENON EQUATIONS INVOLVING k-HESSIAN OPERATORS
    Hassine, Kods
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (09) : 2965 - 2979
  • [33] Fujita type results for a quasilinear parabolic inequality of Hardy-Henon type with time forcing terms?
    Zhou, Jun
    Zhu, Fan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [34] Liouville-type theorems for stable solutions of Kirchhoff equations with exponential and superlinear nonlinearities
    Wei, Yunfeng
    Chen, Caisheng
    Songa, Hongxue
    Yan, Hongwei
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (08) : 1297 - 1309
  • [35] Non-existence results for fourth order Hardy-Henon equations in dimensions 2 and 3
    Ngoan, Tran Thi
    Ngo, Quac Anh
    Van Tuan, Tran
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 397 : 55 - 79
  • [36] Well-posedness, global existence and large time behavior for Hardy-Henon parabolic equations
    Ben Slimene, Byrame
    Tayachi, Slim
    Weissler, Fred B.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 152 : 116 - 148
  • [37] On weak solutions to a fractional Hardy-Henon equation, Part II: Existence
    Hasegawa, Shoichi
    Ikoma, Norihisa
    Kawakami, Tatsuki
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227
  • [38] ON WEAK SOLUTIONS TO A FRACTIONAL HARDY-HENON EQUATION: PART I: NONEXISTENCE
    Hasegawa, Shoichi
    Ikoma, Norihisa
    Kawakami, Tatsuki
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (04) : 1559 - 1600
  • [39] Nonexistence of anti-symmetric solutions for fractional Hardy-Henon system
    Hu, Jiaqi
    Du, Zhuoran
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (03) : 862 - 886
  • [40] HENON TYPE EQUATIONS WITH JUMPING NONLINEARITIES INVOLVING CRITICAL GROWTH
    Barboza, Eudes Mendes
    Do O, Joao Marcos
    Ribeiro, Bruno
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2019, 24 (11-12) : 713 - 744