共 50 条
Liouville type theorems for Hardy-Henon equations with concave nonlinearities
被引:12
|作者:
Dai, Wei
[1
,2
]
Qin, Guolin
[3
,4
]
机构:
[1] Beihang Univ BUAA, Sch Math & Syst Sci, Beijing 100083, Peoples R China
[2] Univ Paris 13, LAGA, UMR 7539, Paris, France
[3] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金:
中国国家自然科学基金;
关键词:
bi-harmonic;
concave nonlinearity;
Hardy-Henon equations;
Liouville theorems;
nonnegative solutions;
super-harmonic property;
ELLIPTIC-EQUATIONS;
POSITIVE SOLUTIONS;
LOCAL BEHAVIOR;
HIGHER-ORDER;
CLASSIFICATION;
D O I:
10.1002/mana.201800532
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we are concerned with the Hardy-Henon equations -Delta u=|x|aupand Delta 2u=|x|aupwith a is an element of R and p is an element of(0,1]. Inspired by Serrin and Zou [25], we prove Liouville theorems for nonnegative solutions to the above Hardy-Henon equations (Theorem 1.1 and Theorem 1.3), that is, the unique nonnegative solution is u equivalent to 0.
引用
收藏
页码:1084 / 1093
页数:10
相关论文