Liouville type theorems for Hardy-Henon equations with concave nonlinearities

被引:12
|
作者
Dai, Wei [1 ,2 ]
Qin, Guolin [3 ,4 ]
机构
[1] Beihang Univ BUAA, Sch Math & Syst Sci, Beijing 100083, Peoples R China
[2] Univ Paris 13, LAGA, UMR 7539, Paris, France
[3] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
bi-harmonic; concave nonlinearity; Hardy-Henon equations; Liouville theorems; nonnegative solutions; super-harmonic property; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; LOCAL BEHAVIOR; HIGHER-ORDER; CLASSIFICATION;
D O I
10.1002/mana.201800532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the Hardy-Henon equations -Delta u=|x|aupand Delta 2u=|x|aupwith a is an element of R and p is an element of(0,1]. Inspired by Serrin and Zou [25], we prove Liouville theorems for nonnegative solutions to the above Hardy-Henon equations (Theorem 1.1 and Theorem 1.3), that is, the unique nonnegative solution is u equivalent to 0.
引用
收藏
页码:1084 / 1093
页数:10
相关论文
共 50 条