Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes

被引:153
作者
Bidkhori, Gholamreza [1 ,2 ]
Benfeitas, Rui [1 ]
Klevstig, Martina [3 ,4 ]
Zhang, Cheng [1 ]
Nielsen, Jens [5 ]
Uhlen, Mathias [1 ]
Boren, Jan [3 ,4 ]
Mardinoglu, Adil [1 ,2 ,5 ]
机构
[1] KTH Royal Inst Technol, Sci Life Lab, SE-17121 Stockholm, Sweden
[2] Kings Coll London, Dent Inst, Ctr Host Microbiome Interact, London SE1 9RT, England
[3] Univ Gothenburg, Dept Mol & Clin Med, SE-41345 Gothenburg, Sweden
[4] Sahlgrens Univ Hosp, Wallenberg Lab, SE-41345 Gothenburg, Sweden
[5] Chalmers Univ Technol, Dept Biol & Biol Engn, SE-41296 Gothenburg, Sweden
关键词
hepatocellular carcinoma; biological networks; personalized medicine; genome-scale metabolic models; systems biology; GENE-EXPRESSION; PATHWAY; CATENIN; CLASSIFICATION; ACTIVATION; PREDICTION; SURVIVAL; BIOLOGY; MODEL;
D O I
10.1073/pnas.1807305115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hepatocellular carcinoma (HCC) is one of the most frequent forms of liver cancer, and effective treatment methods are limited due to tumor heterogeneity. There is a great need for comprehensive approaches to stratify HCC patients, gain biological insights into subtypes, and ultimately identify effective therapeutic targets. We stratified HCC patients and characterized each subtype using transcriptomics data, genome-scale metabolic networks and network topology/controllability analysis. This comprehensive systems-level analysis identified three distinct subtypes with substantial differences in metabolic and signaling pathways reflecting at genomic, transcriptomic, and proteomic levels. These subtypes showed large differences in clinical survival associated with altered kynurenine metabolism, WNT/beta-catenin-associated lipid metabolism, and PI3K/AKT/mTOR signaling. Integrative analyses indicated that the three subtypes rely on alternative enzymes (e.g., ACSS1/ACSS2/ACSS3, PKM/PKLR, ALDOB/ALDOA, MTHFD1L/MTHFD2/MTHFD1) to catalyze the same reactions. Based on systems-level analysis, we identified 8 to 28 subtype-specific genes with pivotal roles in controlling the metabolic network and predicted that these genes may be targeted for development of treatment strategies for HCC subtypes by performing in silico analysis. To validate our predictions, we performed experiments using HepG2 cells under normoxic and hypoxic conditions and observed opposite expression patterns between genes expressed in high/moderate/low-survival tumor groups in response to hypoxia, reflecting activated hypoxic behavior in patients with poor survival. In conclusion, our analyses showed that the heterogeneous HCC tumors can be stratified using a metabolic network-driven approach, which may also be applied to other cancer types, and this stratification may have clinical implications to drive the development of precision medicine.
引用
收藏
页码:E11874 / E11883
页数:10
相关论文
共 57 条
  • [1] Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
    Agren, Rasmus
    Mardinoglu, Adil
    Asplund, Anna
    Kampf, Caroline
    Uhlen, Mathias
    Nielsen, Jens
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2014, 10 (03)
  • [2] Badawy AAB, 2017, INT J TRYPTOPHAN RES, V10, DOI 10.1177/1178646917691938
  • [3] Network biology:: Understanding the cell's functional organization
    Barabási, AL
    Oltvai, ZN
    [J]. NATURE REVIEWS GENETICS, 2004, 5 (02) : 101 - U15
  • [4] Network medicine: a network-based approach to human disease
    Barabasi, Albert-Laszlo
    Gulbahce, Natali
    Loscalzo, Joseph
    [J]. NATURE REVIEWS GENETICS, 2011, 12 (01) : 56 - 68
  • [5] New Challenges to Study Heterogeneity in Cancer Redox Metabolism
    Benfeitas, Rui
    Uhlen, Mathias
    Nielsen, Jens
    Mardinoglu, Adil
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2017, 5
  • [6] Metabolic Network-Based Identification and Prioritization o f Anticancer Targets Based on Expression Data in Hepatocellular Carcinoma
    Bidkhori, Gholamreza
    Benfeitas, Rui
    Elmas, Ezgi
    Kararoudi, Meisam Naeimi
    Arif, Muhammad
    Uhlen, Mathias
    Nielsen, Jens
    Mardinoglu, Adil
    [J]. FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [7] Stratification of Hepatocellular Carcinoma Patients Based on Acetate Utilization
    Bjornson, Elias
    Mukhopadhyay, Bani
    Asplund, Anna
    Pristovsek, Nusa
    Cinar, Resat
    Romeo, Stefano
    Uhlen, Mathias
    Kunos, George
    Nielsen, Jens
    Mardinoglu, Adil
    [J]. CELL REPORTS, 2015, 13 (09): : 2014 - 2026
  • [8] Recon3D enables a three-dimensional view of gene variation in human metabolism
    Brunk, Elizabeth
    Sahoo, Swagatika
    Zielinski, Daniel C.
    Altunkaya, Ali
    Drager, Andreas
    Mih, Nathan
    Gatto, Francesco
    Nilsson, Avlant
    Gonzalez, German Andres Preciat
    Aurich, Maike Kathrin
    Prlic, Andreas
    Sastry, Anand
    Danielsdottir, Anna D.
    Heinken, Almut
    Noronha, Alberto
    Rose, Peter W.
    Burley, Stephen K.
    Fleming, Ronan M. T.
    Nielsen, Jens
    Thiele, Ines
    Palsson, Bernhard O.
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (03) : 272 - +
  • [9] Hepatic Stem-like Phenotype and Interplay of Wnt/β-Catenin and Myc Signaling in Aggressive Childhood Liver Cancer
    Cairo, Stefano
    Armengol, Carolina
    De Reynies, Auelien
    Wei, Yu
    Thomas, Emilie
    Renard, Claire-Angelique
    Goga, Andrei
    Balakrishnan, Asha
    Semeraro, Michaela
    Gresh, Lionel
    Pontoglio, Marco
    Strick-Marchand, Helene
    Levillayer, Florence
    Nouet, Yann
    Rickman, David
    Gauthier, Frederic
    Branchereau, Sophie
    Brugieres, Laurence
    Laithier, Veronique
    Bouvier, Raymonde
    Boman, Francoise
    Basso, Giuseppe
    Michiels, Jean-Francois
    Hofman, Paul
    Arbez-Gindre, Francine
    Jouan, Helene
    Chapeau, Marie-Christine Rousselet
    Berrebi, Dominique
    Marcellin, Luc
    Plenat, Francois
    Zachar, Dominique
    Joubert, Madeleine
    Selves, Janick
    Pasquier, Dominique
    Bioulac-Sage, Paulette
    Grotzer, Michael
    Childs, Margaret
    Fabre, Monique
    Buendia, Marie-Annick
    [J]. CANCER CELL, 2008, 14 (06) : 471 - 484
  • [10] Cancer Genome Atlas Research Network, 2017, CELL, V169