Point Cloud Instance Segmentation using Probabilistic Embeddings

被引:25
|
作者
Zhang, Biao [1 ]
Wonka, Peter [1 ]
机构
[1] KAUST, Thuwal, Saudi Arabia
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
D O I
10.1109/CVPR46437.2021.00877
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a new framework for point cloud instance segmentation. Our framework has two steps: an embedding step and a clustering step. In the embedding step, our main contribution is to propose a probabilistic embedding space for point cloud embedding. Specifically, each point is represented as a tri-variate normal distribution. In the clustering step, we propose a novel loss function, which benefits both the semantic segmentation and the clustering. Our experimental results show important improvements to the SOTA, i.e., 3.1% increased average per-category mAP on the PartNet dataset.
引用
收藏
页码:8879 / 8888
页数:10
相关论文
共 50 条
  • [31] 3D Tooth Instance Segmentation Learning Objectness and Affinity in Point Cloud
    Tian, Yan
    Zhang, Yujie
    Chen, Wei-Gang
    Liu, Dongsheng
    Wang, Huiyan
    Xu, Huayi
    Han, Jianfeng
    Ge, Yiwen
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [32] Instance Segmentation of LiDAR Point Clouds
    Zhang, Feihu
    Guan, Chenye
    Fang, Jin
    Bai, Song
    Yang, Ruigang
    Torr, Philip H. S.
    Prisacariu, Victor
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9448 - 9455
  • [33] Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth
    Neven, Davy
    De Brabandere, Bert
    Proesmans, Marc
    Van Gool, Luc
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8829 - 8837
  • [34] Instance Segmentation and Tracking with Cosine Embeddings and Recurrent Hourglass Networks
    Payer, Christian
    Stern, Darko
    Neff, Thomas
    Bischof, Horst
    Urschler, Martin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 3 - 11
  • [35] Enhanced three-dimensional instance segmentation using multi-feature extracting point cloud neural network
    Wang, Hongxu
    Liu, Jiepeng
    Li, Dongsheng
    Chen, Tianze
    Liu, Pengkun
    Yan, Han
    Wu, Yadong
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2025,
  • [36] A Measurement Model for Aquatic Animals Based on Instance Segmentation and 3D Point Cloud
    He, Zhiqian
    Xu, Xiaoqing
    Luo, Jialu
    Chen, Ziwen
    Song, Weibo
    Cao, Lijie
    Huo, Zhongming
    IEEE ACCESS, 2024, 12 : 156208 - 156223
  • [37] GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud
    Yi, Li
    Zhao, Wang
    Wang, He
    Sung, Minhyuk
    Guibas, Leonidas
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3942 - 3951
  • [38] 3D Point Cloud Instance Segmentation Considering Global Shape Contour Constraints
    Xv, Jiabin
    Deng, Fei
    REMOTE SENSING, 2023, 15 (20)
  • [39] SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation
    Wang, Weiyue
    Yu, Ronald
    Huang, Qiangui
    Neumann, Ulrich
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2569 - 2578
  • [40] Instance segmentation of point cloud captured by RGB-D sensor based on deep learning
    Wang, Zhengtuo
    Xu, Yuetong
    Yu, Jiongyan
    Xu, Guanhua
    Fu, Jianzhong
    Gu, Tianyi
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2021, 34 (09) : 950 - 963