Point Cloud Instance Segmentation using Probabilistic Embeddings

被引:25
|
作者
Zhang, Biao [1 ]
Wonka, Peter [1 ]
机构
[1] KAUST, Thuwal, Saudi Arabia
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
D O I
10.1109/CVPR46437.2021.00877
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a new framework for point cloud instance segmentation. Our framework has two steps: an embedding step and a clustering step. In the embedding step, our main contribution is to propose a probabilistic embedding space for point cloud embedding. Specifically, each point is represented as a tri-variate normal distribution. In the clustering step, we propose a novel loss function, which benefits both the semantic segmentation and the clustering. Our experimental results show important improvements to the SOTA, i.e., 3.1% increased average per-category mAP on the PartNet dataset.
引用
收藏
页码:8879 / 8888
页数:10
相关论文
共 50 条
  • [21] BEACon: a boundary embedded attentional convolution network for point cloud instance segmentation
    Liu, Tianrui
    Cai, Yiyu
    Zheng, Jianmin
    Thalmann, Nadia Magnenat
    VISUAL COMPUTER, 2022, 38 (07): : 2303 - 2313
  • [22] Non-intrusive mass estimation method for crucian carp using instance segmentation and point cloud processing
    Kong, Mingrui
    Li, Beibei
    Zhang, Yuhang
    Liu, Chunhong
    Li, Daoliang
    Duan, Qingling
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 226
  • [23] Probabilistic Boundary-Guided Point Cloud Primitive Segmentation Network
    Wang, Shaohu
    Qin, Fangbo
    Tong, Yuchuang
    Shang, Xiuqin
    Zhang, Zhengtao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [24] A Multiscale Deep Feature for the Instance Segmentation of Water Leakages in Tunnel Using MLS Point Cloud Intensity Images
    Liu, Shuang
    Sun, Haili
    Zhang, Zhenxin
    Li, Yuqi
    Zhong, Ruofei
    Li, Jincheng
    Chen, Siyun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Divide and Conquer: 3D Point Cloud Instance Segmentation With Point-Wise Binarization
    Zhao, Weiguang
    Yan, Yuyao
    Yang, Chaolong
    Ye, Jianan
    Yang, Xi
    Huang, Kaizhu
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 562 - 571
  • [26] Point Cloud Instance Segmentation With Semi-Supervised Bounding-Box Mining
    Liao, Yongbin
    Zhu, Hongyuan
    Zhang, Yanggang
    Ye, Chuangguan
    Chen, Tao
    Fan, Jiayuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10159 - 10170
  • [27] MTCloud: Multi-type convolutional linkage network for point cloud instance segmentation
    Du, Jing
    Cai, Guorong
    Wang, Zongyue
    Su, Jinhe
    Huang, Min
    Zelek, John
    Marcato Junior, Jose
    Li, Jonathan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 270
  • [28] ATSGPN: Adaptive Threshold Instance Segmentation Network in 3D Point Cloud
    Sun, Yu
    Wang, Zhicheng
    Fei, Jingjing
    Chen, Ling
    Wei, Gang
    MIPPR 2019: PATTERN RECOGNITION AND COMPUTER VISION, 2020, 11430
  • [29] SPCR: SEMI-SUPERVISED POINT CLOUD INSTANCE SEGMENTATION WITH PERTURBATION CONSISTENCY REGULARIZATION
    Liao, Yongbin
    Zhu, Hongyuan
    Chen, Tao
    Fan, Jiayuan
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3113 - 3117
  • [30] Joint Semantic and Instance Segmentation in 3D Point Cloud Based on Transformer
    Liu, Suyi
    Wu, Chengdong
    Xu, Fang
    Wang, Juxiang
    Chi, Jianning
    Yu, Xiaosheng
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4074 - 4080