A predictive model for the ichnological suitability of the Jezero crater, Mars: searching for fossilized traces of life- substrate interactions in the 2020 Rover Mission Landing Site

被引:2
作者
Baucon, Andrea [1 ,2 ]
de Carvalho, Carlos Neto [2 ,3 ]
Briguglio, Antonino [1 ]
Piazza, Michele [1 ]
Felletti, Fabrizio [4 ]
机构
[1] Univ Genoa, DISTAV, Genoa, Italy
[2] Geol Off Idanha A Nova, Naturtejo UNESCO Global Geopk, Idanha A Nova, Portugal
[3] Univ Lisbon, Fac Ciencias, Inst D Luiz, Lisbon, Portugal
[4] Univ Milan, Dipartimento Sci Terra Ardito Desio, Milan, Italy
关键词
Paleontology; Ichnology; Bioturbation; Bioerosion; Biostratification; Ichnofossil; GIS; Predictive modelling; Mars; Astrobiology; STRATIGRAPHIC ARCHITECTURE; SEDIMENTARY STRUCTURES; BIOGENIC STRUCTURES; MICROBIAL MATS; MOODIES GROUP; BILLION YEARS; DELTA; DEPOSITS; WATER; STROMATOLITES;
D O I
10.7717/peerj.11784
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ichnofossils, the fossilized products of life-substrate interactions, are among the most abundant biosignatures on Earth and therefore they may provide scientific evidence of potential life that may have existed on Mars. Ichnofossils offer unique advantages in the search for extraterrestrial life, including the fact that they are resilient to processes that obliterate other evidence for past life, such as body fossils, as well as chemical and isotopic biosignatures. The goal of this paper is evaluating the suitability of the Mars 2020 Landing Site for ichnofossils. To this goal, we apply palaeontological predictive modelling, a technique used to forecast the location of fossil sites in uninvestigated areas on Earth. Accordingly, a geographic information system (GIS) of the landing site is developed. Each layer of the GIS maps the suitability for one or more ichnofossil types (bioturbation, bioerosion, biostratification structures) based on an assessment of a single attribute (suitability factor) of the Martian environment. Suitability criteria have been selected among the environmental attributes that control ichnofossil abundance and preservation in 18 reference sites on Earth. The goal of this research is delivered through three predictive maps showing which areas of the Mars 2020 Landing Site are more likely to preserve potential ichnofossils. On the basis of these maps, an ichnological strategy for the Perseverance rover is identified, indicating (1) 10 sites on Mars with high suitability for bioturbation, bioerosion and biostratification ichnofossils, (2) the ichnofossil types, if any, that are more likely to be present at each site, (3) the most efficient observation strategy for detecting eventual ichnofossils. The predictive maps and the ichnological strategy can be easily integrated in the existing plans for the exploration of the Jezero crater, realizing benefits in life-search efficiency and cost reduction.
引用
收藏
页数:59
相关论文
共 178 条
[1]  
Allen J., 1992, PRINCIPLES PHYSICAL
[2]   3.43 billion-year-old stromatolite reef from the Pilbara Craton of western Australia: Ecosystem-scale insights to early life on Earth [J].
Allwood, Abigail C. ;
Walter, Malcolm R. ;
Burch, Ian W. ;
Kamber, Balz S. .
PRECAMBRIAN RESEARCH, 2007, 158 (3-4) :198-227
[3]   PIXL: Planetary Instrument for X-Ray Lithochemistry [J].
Allwood, Abigail C. ;
Wade, Lawrence A. ;
Foote, Marc C. ;
Elam, William Timothy ;
Hurowitz, Joel A. ;
Battel, Steven ;
Dawson, Douglas E. ;
Denise, Robert W. ;
Ek, Eric M. ;
Gilbert, Martin S. ;
King, Matthew E. ;
Liebe, Carl Christian ;
Parker, Todd ;
Pedersen, David A. K. ;
Randall, David P. ;
Sharrow, Robert F. ;
Sondheim, Michael E. ;
Allen, George ;
Arnett, Kenneth ;
Au, Mitchell H. ;
Basset, Christophe ;
Benn, Mathias ;
Bousman, John C. ;
Braun, David ;
Calvet, Robert J. ;
Clark, Benton ;
Cinquini, Luca ;
Conaby, Sterling ;
Conley, Henry A. ;
Davidoff, Scott ;
Delaney, Jenna ;
Denver, Troelz ;
Diaz, Ernesto ;
Doran, Gary B. ;
Ervin, Joan ;
Evans, Michael ;
Flannery, David O. ;
Gao, Ning ;
Gross, Johannes ;
Grotzinger, John ;
Hannah, Brett ;
Harris, Jackson T. ;
Harris, Cathleen M. ;
He, Yejun ;
Heirwegh, Christopher M. ;
Hernandez, Christina ;
Hertzberg, Eric ;
Hodyss, Robert P. ;
Holden, James R. ;
Hummel, Christopher .
SPACE SCIENCE REVIEWS, 2020, 216 (08)
[4]   Reassessing evidence of life in 3,700-million-year-old rocks of Greenland [J].
Allwood, Abigail C. ;
Rosing, Minik T. ;
Flannery, David T. ;
Hurowitz, Joel A. ;
Heirwegh, Christopher M. .
NATURE, 2018, 563 (7730) :241-+
[5]   Finding Fossils in New Ways: An Artificial Neural Network Approach to Predicting the Location of Productive Fossil Localities [J].
Anemone, Robert ;
Emerson, Charles ;
Conroy, Glenn .
EVOLUTIONARY ANTHROPOLOGY, 2011, 20 (05) :169-180
[6]  
[Anonymous], 2017, Atlas of Trace Fossils in Well Core: Appearance, Taxonomy and Interpretation, DOI DOI 10.1007/978-3-319-49837-93
[7]   Infaunal holothurian distributions and their traces in the Fraser River delta front and prodelta, British Columbia, Canada [J].
Ayranci, Korhan ;
Dashtgard, Shahin E. .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2013, 392 :232-246
[8]  
Bains William, 2016, Life-Basel, V6, P25, DOI 10.3390/life6030025
[9]  
Balla A, 2014, MEDITERR ARCHAEOL AR, V14, P119
[10]   Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars [J].
Banham, Steven G. ;
Gupta, Sanjeev ;
Rubin, David M. ;
Watkins, Jessica A. ;
Sumner, Dawn Y. ;
Edgett, Kenneth S. ;
Grotzinger, John P. ;
Lewis, Kevin W. ;
Edgar, Lauren A. ;
Stack-Morgan, Kathryn M. ;
Barnes, Robert ;
Bell, James F., III ;
Day, Mackenzie D. ;
Ewing, Ryan C. ;
Lapotre, Mathieu G. A. ;
Stein, Nathan T. ;
Rivera-Hernandez, Frances ;
Vasavada, Ashwin R. .
SEDIMENTOLOGY, 2018, 65 (04) :993-1042