Maximum-likelihood estimation of the geometric niche preemption model

被引:0
作者
Graffelman, Jan [1 ,2 ]
机构
[1] Tech Univ Catalonia, Dept Stat & Operat Res, Carrer Jordi Girona 1-3, Barcelona 08034, Spain
[2] Univ Washington, Dept Biostat, Univ Tower,15th Floor,4333 Brooklyn Ave, Seattle, WA 98105 USA
来源
ECOSPHERE | 2021年 / 12卷 / 12期
基金
美国国家卫生研究院;
关键词
biodiversity; broken stick model; geometric series; least-squares regression; maximum-likelihood estimator; Monte Carlo simulation; niche preemption; overfitting; preemption t test; rank-abundance plot; robustness; ABUNDANCE PATTERNS; RELATIVE ABUNDANCE; SERIES;
D O I
10.1002/ecs2.3834
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The geometric series or niche preemption model is an elementary ecological model in biodiversity studies. The preemption parameter of this model is usually estimated by regression or iteratively by using May's equation. This article proposes a maximum-likelihood estimator for the niche preemption model, assuming a known number of species and multinomial sampling. A simulation study shows that the maximum-likelihood estimator outperforms the classical estimators in this context in terms of bias and precision. We obtain the distribution of the maximum-likelihood estimator and use it to obtain confidence intervals for the preemption parameter and to develop a preemption t test that can address the hypothesis of equal geometric decay in two samples. We illustrate the use of the new estimator with some empirical data sets taken from the literature and provide software for its use.
引用
收藏
页数:12
相关论文
共 24 条
[1]   The shape of terrestrial abundance distributions [J].
Alroy, John .
SCIENCE ADVANCES, 2015, 1 (08)
[2]  
[Anonymous], 1998, FIELD LAB METHODS GE
[3]   A new formulation of the geometric series with applications to oribatid (Acari, Oribatida) species assemblages from human-disturbed Mediterranean areas [J].
Caruso, Tancredi ;
Migliorini, Massimo .
ECOLOGICAL MODELLING, 2006, 195 (3-4) :402-406
[4]  
Casella R., 2002, Statistical Inference
[5]  
DeGroot MH, 2002, PROBABILITY STAT
[6]   The discovery of species-abundance distribution in an ecological community [J].
Doi, Hideyuki ;
Mori, Terutaka .
OIKOS, 2013, 122 (02) :179-182
[7]   A simple method to fit geometric series and broken stick models in community ecology and island biogeography [J].
Fattorini, S .
ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 2005, 28 (03) :199-205
[8]   The relation between the number of species and the number of individuals in a random sample of an animal population [J].
Fisher, RA ;
Corbet, AS ;
Williams, CB .
JOURNAL OF ANIMAL ECOLOGY, 1943, 12 :42-58
[9]  
Ganeshaiah KN, 1997, CURR SCI INDIA, V73, P128
[10]   Estimating the niche preemption parameter of the geometric series [J].
He, Fangliang ;
Tang, Danling .
ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 2008, 33 (01) :105-107