Microscopic simulation of semiconductor laser devices

被引:3
|
作者
Bueckers, Christina [1 ,2 ]
Hader, Jorg [3 ,4 ]
Moloney, Jerome V. [3 ,4 ]
Koch, Stephan W. [1 ,2 ]
机构
[1] Philipps Univ Marburg, Dept Phys, Renthof 5, D-35032 Marburg, Germany
[2] Philipps Univ Marburg, Mat Sci Ctr, D-35032 Marburg, Germany
[3] Nonlinear Control Strategies Inc, Tucson, AZ 85705 USA
[4] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 9 | 2011年 / 8卷 / 09期
关键词
semiconductor lasers; microscopic laser modeling; semiconductor gain media; quantum well systems; SPONTANEOUS EMISSION; DIODE-LASERS; GAIN; LUMINESCENCE; GAN(X)AS1-X; DESIGN;
D O I
10.1002/pssc.201084137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reviews the application of a systematic microscopic theory for the optical and electronic properties of semiconductors. The theory is applied to quantitatively model and analyze different semiconductor systems. Detailed theory-experiment comparisons are shown for a variety of quantum well gain materials. It is demonstrated how the analysis can be used to aid in the design of modern semiconductor laser devices. (c) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2558 / 2563
页数:6
相关论文
共 50 条
  • [11] Electrostatic Doping in Semiconductor Devices
    Gupta, Gaurav
    Rajasekharan, Bijoy
    Hueting, Raymond J. E.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (08) : 3044 - 3055
  • [12] A self-consistent analysis of semiconductor laser rate equations for system simulation purpose
    Habibullah, F
    Huang, WP
    OPTICS COMMUNICATIONS, 2006, 258 (02) : 230 - 242
  • [13] Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers
    Hader, J
    Moloney, JV
    Koch, SW
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2005, 41 (10) : 1217 - 1226
  • [14] Semiconductor laser linewidth
    Titov, E. A.
    OPTICS AND SPECTROSCOPY, 2015, 119 (03) : 520 - 525
  • [15] Non-quasi-static Effects Simulation of Microwave Circuits based on Physical Model of Semiconductor Devices
    Xu, Ke
    Chen, Xing
    Chen, Qiang
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2020, 35 (09): : 992 - 998
  • [16] Quantification of thermoreflectance temperature measurements in high-power semiconductor devices-lasers and laser bars
    Pierscinski, K.
    Piersciniska, D.
    Bugajski, M.
    MICROELECTRONICS JOURNAL, 2009, 40 (09) : 1373 - 1378
  • [17] Review of Developments in Semiconductor Laser Beam Combining Technology
    Fu Yun
    Tan Hao
    Guo Linhui
    Zhang Lanping
    Jiang Quanwei
    Gao Songxin
    Tang Chun
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (19)
  • [18] A Development Summarization of the Power Semiconductor Devices
    Duan, Baoxing
    Yang, Yintang
    IETE TECHNICAL REVIEW, 2011, 28 (06) : 503 - 510
  • [19] Semiconductor-superconductor optoelectronic devices
    Bouscher, Shlomi
    Panna, Dmitry
    Hayat, Alex
    JOURNAL OF OPTICS, 2017, 19 (10)
  • [20] Nanoscale semiconductor devices as new biomaterials
    Zimmerman, John
    Parameswaran, Ramya
    Tian, Bozhi
    BIOMATERIALS SCIENCE, 2014, 2 (05) : 619 - 626