Photovoltaics;
Aluminum fins;
PV cooling;
Energy efficiency;
Entropy generation;
PHASE-CHANGE MATERIAL;
WATER PUMPING SYSTEM;
CONVERSION EFFICIENCY;
THERMAL COLLECTOR;
SOLAR COLLECTOR;
EXERGY ANALYSIS;
HEAT-TRANSFER;
PERFORMANCE;
ENERGY;
PV;
D O I:
10.1007/s10973-021-11178-3
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
The decrease in output power of a photovoltaic (PV) power plant with increase in temperature is one of the main issues which can be controlled by cooling the PV modules. In this experimental study, various numbers of 10, 20, 30 and 40 aluminum fins in two different geometries of straight and zigzag were mounted at the back side of PV modules. In order to conform the ambient conditions, experiments were done by a solar simulator, under constant irradiation of 630 W m(-2). The main objective of the study is to measure the effect of mounted fins at the back surface of PV panels, on electricity generation by lowering the panel surface temperature. PV panels with zigzag fin geometry are found to perform better than those with straight fins and also the module without fins. The results show that in case of 10 fins, temperature drops of 9 degrees C and 15 degrees C and increase in output power of 8% and 14% are achieved for straight and zigzag geometries, respectively. The entropy generation as an important thermodynamic parameter is also evaluated and a reduction of 1.5% to 2.5% is found in different experiments. Follow-up potential research areas are also identified.