A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer

被引:109
作者
Li, Menglei [1 ,2 ]
Zhang, Jing [3 ]
Dan, Yibo [3 ]
Yao, Yefeng [3 ]
Dai, Weixing [4 ]
Cai, Guoxiang [4 ]
Yang, Guang [3 ]
Tong, Tong [1 ,2 ]
机构
[1] Fudan Univ, Dept Radiol, Shanghai Canc Ctr, Shanghai 200032, Peoples R China
[2] Fudan Univ, Dept Oncol, Shanghai Med Coll, Shanghai 200032, Peoples R China
[3] East China Normal Univ, Shanghai Key Lab Magnet Resonance, Shanghai 200062, Peoples R China
[4] Fudan Univ, Dept Colorectal Surg, Shanghai Canc Ctr, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金;
关键词
TUMOR SIZE; COLON-CANCER; STAGE-III; SURVIVAL; INVASION; DEPTH;
D O I
10.1186/s12967-020-02215-0
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background Accurate lymph node metastasis (LNM) prediction in colorectal cancer (CRC) patients is of great significance for treatment decision making and prognostic evaluation. We aimed to develop and validate a clinical-radiomics nomogram for the individual preoperative prediction of LNM in CRC patients. Methods We enrolled 766 patients (458 in the training set and 308 in the validation set) with clinicopathologically confirmed CRC. We included nine significant clinical risk factors (age, sex, preoperative carbohydrate antigen 19-9 (CA19-9) level, preoperative carcinoembryonic antigen (CEA) level, tumor size, tumor location, histotype, differentiation and M stage) to build the clinical model. We used analysis of variance (ANOVA), relief and recursive feature elimination (RFE) for feature selection (including clinical risk factors and the imaging features of primary lesions and peripheral lymph nodes), established classification models with logistic regression analysis and selected the respective candidate models by fivefold cross-validation. Then, we combined the clinical risk factors, primary lesion radiomics features and peripheral lymph node radiomics features of the candidate models to establish combined predictive models. Model performance was assessed by the area under the receiver operating characteristic (ROC) curve (AUC). Finally, decision curve analysis (DCA) and a nomogram were used to evaluate the clinical usefulness of the model. Results The clinical-primary lesion radiomics-peripheral lymph node radiomics model, with the highest AUC value (0.7606), was regarded as the candidate model and had good discrimination and calibration in both the training and validation sets. DCA demonstrated that the clinical-radiomics nomogram was useful for preoperative prediction in the clinical environment. Conclusion The present study proposed a clinical-radiomics nomogram with a combination of clinical risk factors and radiomics features that can potentially be applied in the individualized preoperative prediction of LNM in CRC patients.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Predictive Factors of Thoracic Lymph Node Metastasis Accompanying Pulmonary Metastasis from Colorectal Cancer [J].
Ali, Kamran ;
Cho, Sukki ;
Jang, Hyo Jun ;
Kim, Kwhanmien ;
Jheon, Sanghoon .
THORACIC AND CARDIOVASCULAR SURGEON, 2019, 67 (08) :683-687
[2]   The Immunoscore: Colon Cancer and Beyond [J].
Angell, Helen K. ;
Bruni, Daniela ;
Barrett, J. Carl ;
Herbst, Ronald ;
Galon, Jerome .
CLINICAL CANCER RESEARCH, 2020, 26 (02) :332-339
[3]   T1 colorectal cancer: Poor histological grading is predictive of lymph-node metastases [J].
Caputo, Damiano ;
Caricato, Marco ;
La Vaccara, Vincenzo ;
Taffon, Chiara ;
Capolupo, Gabriella Teresa ;
Coppola, Roberto .
INTERNATIONAL JOURNAL OF SURGERY, 2014, 12 (03) :209-212
[4]   More extensive nodal dissection improves survival for stages I to III of colon cancer - A population-based study [J].
Chen, Steven L. ;
Bilchik, Anton J. .
ANNALS OF SURGERY, 2006, 244 (04) :602-610
[5]   Meta-analysis of Predictive Clinicopathologic Factors for Lymph Node Metastasis in Patients with Early Colorectal Carcinoma [J].
Choi, Ju Young ;
Jung, Sung-Ae ;
Shim, Ki-Nam ;
Cho, Won Young ;
Keum, Bora ;
Byeon, Jeong-Sik ;
Huh, Kyu Chan ;
Jang, Byung Ik ;
Chang, Dong Kyung ;
Jung, Hwoon-Yong ;
Kong, Kyoung Ae .
JOURNAL OF KOREAN MEDICAL SCIENCE, 2015, 30 (04) :398-406
[6]   Incidence and Predictive Model for Lateral Pelvic Lymph Node Metastasis in Lower Rectal Cancer [J].
Dev K. ;
Veerenderkumar K.V. ;
Krishnamurthy S. .
Indian Journal of Surgical Oncology, 2018, 9 (2) :150-156
[7]   Diagnostic precision of CT in local staging of colon cancers: a meta-analysis [J].
Dighe, S. ;
Purkayastha, S. ;
Swift, I. ;
Tekkis, P. P. ;
Darzi, A. ;
A'Hern, R. ;
Brown, G. .
CLINICAL RADIOLOGY, 2010, 65 (09) :708-719
[8]   Colon Cancer [J].
Engstrom, Paul F. ;
Arnoletti, Juan Pablo ;
Benson, Al B., III ;
Chen, Yi-Jen ;
Choti, Michael A. ;
Cooper, Harry S. ;
Covey, Anne ;
Dilawari, Raza A. ;
Early, Dayna S. ;
Enzinger, Peter C. ;
Fakih, Marwan G. ;
Fleshman, James, Jr. ;
Fuchs, Charles ;
Grem, Jean L. ;
Kiel, Krystyna ;
Knol, James A. ;
Leong, Lucille A. ;
Lin, Edward ;
Mulcahy, Mary F. ;
Rao, Sujata ;
Ryan, David P. ;
Saltz, Leonard ;
Shibata, David ;
Skibber, John M. ;
Sofocleous, Constantinos ;
Thomas, James ;
Venook, Alan P. ;
Willett, Christopher .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2009, 7 (08) :778-831
[9]   Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 [J].
Ferlay, Jacques ;
Soerjomataram, Isabelle ;
Dikshit, Rajesh ;
Eser, Sultan ;
Mathers, Colin ;
Rebelo, Marise ;
Parkin, Donald Maxwell ;
Forman, David ;
Bray, Freddie .
INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (05) :E359-E386
[10]   Predictive Factors for Lymph Node Metastasis in Submucosal Invasive Colorectal Carcinoma: A New Proposal of Depth of Invasion for Radical Surgery [J].
Han, Jeonghee ;
Hur, Hyuk ;
Min, Byung Soh ;
Lee, Kang Young ;
Kim, Nam Kyu .
WORLD JOURNAL OF SURGERY, 2018, 42 (08) :2635-2641