THE MULTIPLICATIVE ORDERS OF CERTAIN GAUSS FACTORIALS

被引:9
作者
Cosgrave, John B. [1 ]
Dilcher, Karl [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Wilson's theorem; Gauss' theorem; factorials; congruences; QUOTIENTS;
D O I
10.1142/S179304211100396X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A theorem of Gauss extending Wilson's theorem states the congruence (n - 1)(n)! equivalent to -1 (mod n) whenever n has a primitive root, and equivalent to 1 (mod n) otherwise, where N-n! denotes the product of all integers up to N that are relatively prime to n. In the spirit of this theorem, we study the multiplicative orders of (n-1/M)(n)! (mod n) for odd prime powers p(alpha). We prove a general result about the connection between the order for pa and for p(alpha+1) and study exceptions to the general rule. Particular emphasis is given to the cases M = 3, M = 4 and M = 6, while the case M = 2 is already known.
引用
收藏
页码:145 / 171
页数:27
相关论文
共 18 条
  • [1] Abramovitz M., 1964, Handbook of mathematical functions, P1
  • [2] Wilson quotients for composite moduli
    Agoh, T
    Dilcher, K
    Skula, L
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (222) : 843 - 861
  • [3] [Anonymous], 1998, Gauss and Jacobi Sums
  • [4] Borwein J.M., 2008, Mathematics by Experiment-Plausible Reasoning in the 21st Century
  • [5] ON THE MOD P2 DETERMINATION OF ((P-1)/2(P-1)/4)
    CHOWLA, S
    DWORK, B
    EVANS, R
    [J]. JOURNAL OF NUMBER THEORY, 1986, 24 (02) : 188 - 196
  • [6] Cosgrave J. B., 2008, INTEGERS, V8, pA39
  • [7] COSGRAVE JB, GAUSS WILSON T UNPUB
  • [8] Mod p3 analogues of theorems of Gauss and Jacobi on binomial coefficients
    Cosgrave, John B.
    Dilcher, Karl
    [J]. ACTA ARITHMETICA, 2010, 142 (02) : 103 - 118
  • [9] A search for Wieferich and Wilson primes
    Crandall, R
    Dilcher, K
    Pomerance, C
    [J]. MATHEMATICS OF COMPUTATION, 1997, 66 (217) : 433 - 449
  • [10] Darmon H., 1997, C. R. Math. Rep. Acad. Sci. Canada, V19, P3