A model-based scan statistic for identifying extreme chromosomal regions of gene expression in human tumors

被引:20
作者
Levin, AM
Ghosh, D
Cho, KR
Kardia, SLR
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48104 USA
[3] Univ Michigan, Dept Pathol, Ann Arbor, MI 48019 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/bti417
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The analysis of gene expression data in its chromosomal context has been a recent development in cancer research. However, currently available methods fail to account for variation in the distance between genes, gene density and genomic features (e.g. GC content) in identifying increased or decreased chromosomal regions of gene expression. Results: We have developed a model-based scan statistic that accounts for these aspects of the complex landscape of the human genome in the identification of extreme chromosomal regions of gene expression. This method may be applied to gene expression data regardless of the microarray platform used to generate it. To demonstrate the accuracy and utility of this method, we applied it to a breast cancer gene expression dataset and tested its ability to predict regions containing medium-to-high level DNA amplification (DNA ratio values > 2). A classifier was developed from the scan statistic results that had a 10-fold cross-validated classification rate of 93% and a positive predictive value of 88%. This result strongly suggests that the model-based scan statistic and the expression characteristics of an increased chromosomal region of gene expression can be used to accurately predict chromosomal regions containing amplified genes.
引用
收藏
页码:2867 / 2874
页数:8
相关论文
共 24 条
  • [1] Bayani J, 2002, CANCER RES, V62, P3466
  • [2] Gene-expression profiles predict survival of patients with lung adenocarcinoma
    Beer, DG
    Kardia, SLR
    Huang, CC
    Giordano, TJ
    Levin, AM
    Misek, DE
    Lin, L
    Chen, GA
    Gharib, TG
    Thomas, DG
    Lizyness, ML
    Kuick, R
    Hayasaka, S
    Taylor, JMG
    Iannettoni, MD
    Orringer, MB
    Hanash, S
    [J]. NATURE MEDICINE, 2002, 8 (08) : 816 - 824
  • [3] The compositional evolution of vertebrate genomes
    Bernardi, G
    [J]. GENE, 2000, 259 (1-2) : 31 - 43
  • [4] Prediction of complete gene structures in human genomic DNA
    Burge, C
    Karlin, S
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) : 78 - 94
  • [5] The human transcriptome map:: Clustering of highly expressed genes in chromosomal domains
    Caron, H
    van Schaik, B
    van der Mee, M
    Baas, F
    Riggins, G
    van Sluis, P
    Hermus, MC
    van Asperen, R
    Boon, K
    Voûte, PA
    Heisterkamp, S
    van Kampen, A
    Versteeg, R
    [J]. SCIENCE, 2001, 291 (5507) : 1289 - +
  • [6] Crawley JJ, 2002, GENOME BIOL, V3
  • [7] DEMBO A, 1992, ANN APPL PROBAB, V2, P329, DOI DOI 10.1214/aoap/1177005707
  • [8] The N-myc and c-mjc downstream pathways include the chromosome 17q genes nm23-H1 and nm23-H2
    Godfried, MB
    Veenstra, M
    Von Sluis, P
    Boon, K
    Von Asperen, R
    Hermus, MC
    Von Schaik, BDC
    Voûte, TPA
    Schwab, M
    Versteeg, R
    Caron, HN
    [J]. ONCOGENE, 2002, 21 (13) : 2097 - 2101
  • [9] Genome changes and gene expression in human solid tumors
    Gray, JW
    Collins, C
    [J]. CARCINOGENESIS, 2000, 21 (03) : 443 - 452
  • [10] Combining DNA expression with positional information to detect functional silencing of chromosomal regions
    Hüsing, J
    Zeschnigk, M
    Boes, T
    Jöckel, KH
    [J]. BIOINFORMATICS, 2003, 19 (18) : 2335 - 2342