One-Dimensional Zinc-Based Coordination Polymer as a Higher Capacity Anode Material for Lithium Ion Batteries

被引:57
作者
Song, Yidan [1 ,2 ]
Yu, Lili [1 ,2 ]
Gao, Yuanrui [3 ]
Shi, Changdong [1 ,2 ]
Cheng, Meiling [1 ,2 ]
Wang, Xianmei [1 ,2 ]
Liu, Hong-Jiang [3 ]
Liu, Qi [1 ,2 ,4 ]
机构
[1] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, 1 Gehu Rd, Changzhou 213164, Jiangsu, Peoples R China
[2] Changzhou Univ, Adv Catalysis & Green Mfg Collaborat Innovat Ctr, 1 Gehu Rd, Changzhou 213164, Jiangsu, Peoples R China
[3] Shanghai Univ, Dept Chem, Coll Sci, 99 Shangda Rd, Shanghai 200444, Peoples R China
[4] Nanjing Univ, State Key Lab Coordinat Chem, Nanjing 210093, Jiangsu, Peoples R China
关键词
METAL-ORGANIC FRAMEWORK; LIGAND REDOX ACTIVITIES; CRYSTAL-STRUCTURES; ENERGY-STORAGE; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; MAGNETIC-PROPERTIES; COMPLEXES; SUPERCAPACITORS; LUMINESCENCE;
D O I
10.1021/acs.inorgchem.7b01441
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A zinc-based one-dimensional (1D) coordination polymer ([Zn-(H(2)mpca)(2)(tfbdc)(H2O)], Zn-ODCP) has been synthesized and characterized by spectroscopic and physicochemical methods, single-crystal X-ray diffraction, and thermogravimetric analysis (H(2)mpca = 3-methyl-1H-pyrazole-4-carboxylic acid; H(2)tfbdc = 2,3,5,6-tetrafluoroterephthalic acid). Zn-ODCP shows blue luminescence in the solid state. When Zn-ODCP acts as an anode material for lithium ion batteries, it exhibits a good cyclic stability and a higher reversible capacity of 300 mAh g(-1) at 5O mA g(-1) after 50 cycles. The higher capacity may be mainly ascribed to the metal ion and ligand all taking part in lithium storage. Searching for electrode materials of lithium ion batteries from 1D metal coordination polymers is a new route.
引用
收藏
页码:11603 / 11609
页数:7
相关论文
共 56 条
[1]   A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage [J].
An, Tiance ;
Wang, Yuhang ;
Tang, Jing ;
Wang, Yang ;
Zhang, Lijuan ;
Zheng, Gengfeng .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 445 :320-325
[2]  
[Anonymous], 1997, SHELXTL 97 PROGRAM X
[3]  
[Anonymous], 1988, ANAL XRAY PHOTOELECT
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]  
Armand M, 2009, NAT MATER, V8, P120, DOI [10.1038/nmat2372, 10.1038/NMAT2372]
[6]   Coordination Polymers Versus Metal-Organic Frameworks [J].
Biradha, Kumar ;
Ramana, Arunachalam ;
Vittal, Jagadese J. .
CRYSTAL GROWTH & DESIGN, 2009, 9 (07) :2969-2970
[7]   A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions [J].
Chen, Banglin ;
Wang, Liangbo ;
Xiao, Yunqing ;
Fronczek, Frank R. ;
Xue, Ming ;
Cui, Yuanjing ;
Qian, Guodong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (03) :500-503
[8]   Metal dicarboxylates: new anode materials for lithium-ion batteries with good cycling performance [J].
Fei, Hailong ;
Liu, Xin ;
Li, Zhiwei ;
Feng, Wenjing .
DALTON TRANSACTIONS, 2015, 44 (21) :9909-9914
[9]   Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties [J].
Ferey, Gerard ;
Millange, Franck ;
Morcrette, Mathieu ;
Serre, Christian ;
Doublet, Marie-Liesse ;
Greneche, Jean-Marc ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (18) :3259-3263
[10]   The Chemistry and Applications of Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Cordova, Kyle E. ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2013, 341 (6149) :974-+