Entanglement-Enhanced Sensing in a Lossy and Noisy Environment

被引:209
|
作者
Zhang, Zheshen [1 ]
Mouradian, Sara [1 ]
Wong, Franco N. C. [1 ]
Shapiro, Jeffrey H. [1 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
关键词
QUANTUM TELEPORTATION; OPTICAL-PHASE; ILLUMINATION; SENSITIVITY; METROLOGY; STATES; LIGHT; LIMIT;
D O I
10.1103/PhysRevLett.114.110506
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonclassical states are essential for optics-based quantum information processing, but their fragility limits their utility for practical scenarios in which loss and noise inevitably degrade, if not destroy, nonclassicality. Exploiting nonclassical states in quantum metrology yields sensitivity advantages over all classical schemes delivering the same energy per measurement interval to the sample being probed. These enhancements, almost without exception, are severely diminished by quantum decoherence. Here, we experimentally demonstrate an entanglement-enhanced sensing system that is resilient to quantum decoherence. We employ entanglement to realize a 20% signal-to-noise ratio improvement over the optimum classical scheme in an entanglement-breaking environment plagued by 14 dB of loss and a noise background 75 dB stronger than the returned probe light. Our result suggests that advantageous quantum-sensing technology could be developed for practical situations.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Demonstration of Entanglement-Enhanced Covert Sensing
    Hao, Shuhong
    Shi, Haowei
    Gagatsos, Christos N.
    Mishra, Mayank
    Bash, Boulat
    Djordjevic, Ivan
    Guha, Saikat
    Zhuang, Quntao
    Zhang, Zheshen
    PHYSICAL REVIEW LETTERS, 2022, 129 (01)
  • [2] Realistic model of entanglement-enhanced sensing in optical fibers
    Krueper, Gregory
    Yu, Charles
    Libby, Stephen B.
    Mellors, Robert
    Cohen, Lior
    Gopinath, Juliet T.
    OPTICS EXPRESS, 2022, 30 (06) : 8652 - 8666
  • [3] Entanglement-enhanced optical atomic clocks
    Colombo, Simone
    Pedrozo-Penafiel, Edwin
    Vuletic, Vladan
    APPLIED PHYSICS LETTERS, 2022, 121 (21)
  • [4] Entanglement-enhanced atomic gyroscope
    Cooper, J. J.
    Hallwood, D. W.
    Dunningham, J. A.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [5] Entanglement-enhanced measurement of a completely unknown optical phase
    Xiang, G. Y.
    Higgins, B. L.
    Berry, D. W.
    Wiseman, H. M.
    Pryde, G. J.
    NATURE PHOTONICS, 2011, 5 (01) : 43 - 47
  • [6] Entanglement-enhanced lidars for simultaneous range and velocity measurements
    Zhuang, Quntao
    Zhang, Zheshen
    Shapiro, Jeffrey H.
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [7] Entanglement-enhanced dual-comb spectroscopy
    Shi, Haowei
    Chen, Zaijun
    Fraser, Scott E.
    Yu, Mengjie
    Zhang, Zheshen
    Zhuang, Quntao
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [8] Entanglement-Enhanced Phase Estimation without Prior Phase Information
    Colangelo, G.
    Martin Ciurana, F.
    Puentes, G.
    Mitchell, M. W.
    Sewell, R. J.
    PHYSICAL REVIEW LETTERS, 2017, 118 (23)
  • [9] Entanglement-Enhanced Measurement of a Completely Unknown Phase
    Berry, D. W.
    Xiang, G. Y.
    Higgins, B. L.
    Wiseman, H. M.
    Pryde, G. J.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [10] Entanglement-enhanced time-continuous quantum control in optomechanics
    Hofer, Sebastian G.
    Hammerer, Klemens
    PHYSICAL REVIEW A, 2015, 91 (03):