An efficient algorithm for the solution of a coupled Sylvester equation appearing in descriptor systems

被引:34
作者
Shahzad, Amir [1 ]
Jones, Bryn Ll [2 ]
Kerrigan, Eric C. [1 ,3 ]
Constantinides, George A. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Scottish Marine Inst, Scottish Assoc Marine Sci, Oban PA37 1QA, Argyll, Scotland
[3] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Descriptor systems; Matrix equations; Numerical algorithms; Coupled Sylvester equation; Efficient algorithms;
D O I
10.1016/j.automatica.2010.10.038
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Descriptor systems consisting of a large number of differential-algebraic equations (DAEs) usually arise from the discretization of partial differential-algebraic equations. This paper presents an efficient algorithm for solving the coupled Sylvester equation that arises in converting a system of linear DAEs to ordinary differential equations. A significant computational advantage is obtained by exploiting the structure of the involved matrices. The proposed algorithm removes the need to solve a standard Sylvester equation or to invert a matrix. The improved performance of this new method over existing techniques is demonstrated by comparing the number of Floating-point operations and via numerical examples. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:244 / 248
页数:5
相关论文
共 11 条
[1]  
[Anonymous], P EUR CONTR C BUD HU
[2]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[3]  
Dai L., 1989, LECT NOTES CONTROL I
[4]   On parameter and state estimation for linear differential-algebraic equations [J].
Gerdin, Markus ;
Schoen, Thomas B. ;
Glad, Torkel ;
Gustafsson, Fredrik ;
Ljung, Lennart .
AUTOMATICA, 2007, 43 (03) :416-425
[5]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[6]   HESSENBERG-SCHUR METHOD FOR THE PROBLEM AX+XB=C [J].
GOLUB, GH ;
NASH, S ;
VANLOAN, C .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (06) :909-913
[7]  
Higham N. J., 2002, Accuracy and stability of numerical algorithms
[9]   Extracting partial canonical structure for large scale eigenvalue problems [J].
Kågström, B ;
Wiberg, P .
NUMERICAL ALGORITHMS, 2000, 24 (03) :195-237
[10]   GENERALIZED SCHUR METHODS WITH CONDITION ESTIMATORS FOR SOLVING THE GENERALIZED SYLVESTER EQUATION [J].
KAGSTROM, B ;
WESTIN, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (07) :745-751