Online Learning of Riemannian Hidden Markov Models in Homogeneous Hadamard Spaces

被引:4
作者
Tupker, Quinten [1 ]
Said, Salem [2 ]
Mostajeran, Cyrus [3 ]
机构
[1] Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Bordeaux, CNRS, Bordeaux, France
[3] Univ Cambridge, Dept Engn, Cambridge CP2 1PZ, England
来源
GEOMETRIC SCIENCE OF INFORMATION (GSI 2021) | 2021年 / 12829卷
基金
欧洲研究理事会;
关键词
Hidden Markov model; Riemannian manifold; Gaussian distribution; Expectation-maximization; k-means clustering; Stochastic gradient descent;
D O I
10.1007/978-3-030-80209-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hidden Markov models with observations in a Euclidean space play an important role in signal and image processing. Previous work extending to models where observations lie in Riemannian manifolds based on the Baum-Welch algorithm suffered from high memory usage and slow speed. Here we present an algorithm that is online, more accurate, and offers dramatic improvements in speed and efficiency.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 11 条