Reinforcement Learning Based Whale Optimizer

被引:7
作者
Becerra-Rozas, Marcelo [1 ]
Lemus-Romani, Jose [4 ]
Crawford, Broderick [1 ]
Soto, Ricardo [1 ]
Cisternas-Caneo, Felipe [1 ]
Embry, Andres Trujillo [1 ]
Molina, Maximo Arnao [1 ]
Tapia, Diego [1 ]
Castillo, Mauricio [1 ]
Misra, Sanjay [2 ]
Rubio, Jose-Miguel [3 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Valparaiso, Chile
[2] Covenant Univ, Ota, Nigeria
[3] Univ Bernardo OHiggins, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Sch Civil Construct, Santiago, Chile
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT IX | 2021年 / 12957卷
关键词
Metaheuristic; SARSA; Q-Learning; Swarm intelligence; Whale optimization algorithm; Combinatorial optimization;
D O I
10.1007/978-3-030-87013-3_16
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work proposes a Reinforcement Learning based optimizer integrating SARSA and Whale Optimization Algorithm. SARSA determines the binarization operator required during the metaheuristic process. The hybrid instance is applied to solve benchmarks of the Set Covering Problem and it is compared with a Q-learning version, showing good results in terms of fitness, specifically, SARSA beats its Q-Learning version in 44 out of 45 instances evaluated. It is worth mentioning that the only instance where it does not win is a tie. Finally, thanks to graphs presented in our results analysis we can observe that not only does it obtain good results, it also obtains a correct exploration and exploitation balance as presented in the referenced literature.
引用
收藏
页码:205 / 219
页数:15
相关论文
共 26 条
[1]  
Bisong E., 2019, Building machine learning and deep learning models on Google cloud platform: a comprehensive guide for beginners, P59, DOI [DOI 10.1007/978-1-4842-4470-8_19, DOI 10.1007/978-1-4842-4470-8_7]
[2]  
Cisternas-Caneo Felipe, 2021, Innovations in Bio-Inspired Computing and Applications. Proceedings of the 11th International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA 2020). Advances in Intelligent Systems and Computing (AISC 1372), P76, DOI 10.1007/978-3-030-73603-3_7
[3]  
Crawford B., 2020, ALGORITMOS AMBIDIEST
[4]   Long-Term Memory Harris Hawk Optimization for High Dimensional and Optimal Power Flow Problems [J].
Hussain, Kashif ;
Zhu, William ;
Salleh, Mohd Najib Mohd .
IEEE ACCESS, 2019, 7 :147596-147616
[5]   Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization [J].
Lanza-Gutierrez, Jose M. ;
Crawford, Broderick ;
Soto, Ricardo ;
Berrios, Natalia ;
Gomez-Pulido, Juan A. ;
Paredes, Fernando .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 70 :67-82
[6]   Ambidextrous Socio-Cultural Algorithms [J].
Lemus-Romani, Jose ;
Crawford, Broderick ;
Soto, Ricardo ;
Astorga, Gino ;
Misra, Sanjay ;
Crawford, Kathleen ;
Foschino, Giancarla ;
Salas-Fernandez, Agustin ;
Paredes, Fernando .
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT VI, 2020, 12254 :923-938
[7]   ON A TEST OF WHETHER ONE OF 2 RANDOM VARIABLES IS STOCHASTICALLY LARGER THAN THE OTHER [J].
MANN, HB ;
WHITNEY, DR .
ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (01) :50-60
[8]   The Whale Optimization Algorithm [J].
Mirjalili, Seyedali ;
Lewis, Andrew .
ADVANCES IN ENGINEERING SOFTWARE, 2016, 95 :51-67
[9]  
Misra S., 2021, Information and Communication Technology and Applications. ICTA 2020, Communications in Computer and Information Science, P727, DOI [10.1007/978-3-030-69143-1_55, DOI 10.1007/978-3-030-69143-1_55, DOI 10.1007/978-3-030-69143-1_55/COVER]
[10]   A better balance in metaheuristic algorithms: Does it exist? [J].
Morales-Castaneda, Bernardo ;
Zaldivar, Daniel ;
Cuevas, Erik ;
Fausto, Fernando ;
Rodriguez, Alma .
SWARM AND EVOLUTIONARY COMPUTATION, 2020, 54