A note on the stability of trinomials over finite fields

被引:5
作者
Ahmadi, Omran [1 ]
Monsef-Shokri, Khosro [2 ]
机构
[1] Inst Res Fundamental Sci IPM, Tehran, Iran
[2] Shahid Beheshti Univ, Dept Math Sci, Tehran, Iran
关键词
Polynomials; Iterations; Stability; Finite fields; IRREDUCIBLE POLYNOMIALS;
D O I
10.1016/j.ffa.2020.101649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A polynomial f (x) over a field K is called stable if all of its iterates are irreducible over K. In this paper, we study the stability of trinomials over finite fields. We show that if f (x) is a trinomial of even degree over the binary field F-2, then (x) is not stable. We prove similar results for some families of monic trinomials over finite fields of odd characteristic. We also study the stability of polynomials of higher weights and prove some results and pose a new conjecture. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 22 条
  • [1] Ahmadi O, 2007, APPL ALGEBR ENG COMM, V18, P391, DOI 10.1007/s00200-007-0044-y
  • [2] Ahmadi O, 2007, UTILITAS MATHEMATICA, V72, P111
  • [3] ON STABLE QUADRATIC POLYNOMIALS
    Ahmadi, Omran
    Luca, Florian
    Ostafe, Alina
    Shparlinski, Igor E.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (02) : 359 - 369
  • [4] Stability of polynomials
    Ali, N
    [J]. ACTA ARITHMETICA, 2005, 119 (01) : 53 - 63
  • [5] [Anonymous], 1898, Verhandlungen des ersten Internationalen Mathematiker-Kongresses in Zurich vom 9. bis 11. August 1897
  • [6] Irreducibility of the iterates of a quadratic polynomial over a field
    Ayad, M
    McQuillan, DL
    [J]. ACTA ARITHMETICA, 2000, 93 (01) : 87 - 97
  • [7] Irreducibility of the iterates of a quadratic polynomial over a field (vol 93, pg 87, 2000)
    Ayad, M
    McQuillan, DL
    [J]. ACTA ARITHMETICA, 2001, 99 (01) : 97 - 97
  • [8] COHEN SD, 1969, PROC CAMB PHILOS S-M, V66, P335
  • [9] Dalen K., 1955, MATH SCAND, P124
  • [10] A Refined Conjecture for Factorizations of Iterates of Quadratic Polynomials over Finite Fields
    Goksel, Vefa
    Xia, Shixiang
    Boston, Nigel
    [J]. EXPERIMENTAL MATHEMATICS, 2015, 24 (03) : 304 - 311