In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster

被引:28
作者
Schnorrenberg, Sebastian [1 ]
Grotjohann, Tim [1 ]
Vorbrueggen, Gerd [2 ,3 ]
Herzig, Alf [2 ,5 ]
Hell, Stefan W. [1 ]
Jakobs, Stefan [1 ,4 ]
机构
[1] Max Planck Inst Biophys Chem, Dept NanoBiophoton, Gottingen, Germany
[2] Max Planck Inst Biophys Chem, Dept Mol Dev Biol, Gottingen, Germany
[3] Univ Gottingen, Abt Entwicklungsbiol, Gottingen, Germany
[4] Univ Med Ctr Gottingen, Dept Neurol, Gottingen, Germany
[5] Max Planck Inst Infect Biol, Dept Cellular Microbiol, Berlin, Germany
来源
ELIFE | 2016年 / 5卷
关键词
SHEET FLUORESCENCE MICROSCOPY; LIVING BRAIN-SLICES; DENDRITIC SPINES; STED MICROSCOPY; NANOSCOPY; PROTEIN; RESOLUTION; GREEN; GFP;
D O I
10.7554/eLife.15567
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grodohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of <60 nm. RESOLFT nanoscopy enabled time-lapse recordings comprising 40 images and facilitated recordings 40 ism deep within fly tissues.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Super-resolution microscopy of mitochondria
    Jakobs, Stefan
    Wurm, Christian A.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2014, 20 : 9 - 15
  • [22] Super-resolution microscopy for nanosensing
    Galbraith, James A.
    Galbraith, Catherine G.
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2011, 3 (03) : 247 - 255
  • [23] Quantitative super-resolution microscopy: pitfalls and strategies for image analysis
    Durisic, Nela
    Cuervo, Lara Laparra
    Lakadamyali, Melike
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2014, 20 : 22 - 28
  • [24] Introduction to super-resolution microscopy
    Yamanaka, Masahito
    Smith, Nicholas I.
    Fujita, Katsumasa
    MICROSCOPY, 2014, 63 (03) : 177 - 192
  • [25] Super-Resolution Microscopy Opens New Doors to Life at the Nanoscale
    Fuhrmann, Martin
    Gockel, Nala
    Arizono, Misa
    Dembitskaya, Yulia
    Naegerl, U. Valentin
    Pennacchietti, Francesca
    Damenti, Martina
    Testa, Ilaria
    Willig, Katrin I.
    JOURNAL OF NEUROSCIENCE, 2022, 42 (45) : 8488 - 8497
  • [26] Towards structural biology with super-resolution microscopy
    Molle, Julia
    Jakob, Leonhard
    Bohlen, Johann
    Raab, Mario
    Tinnefeld, Philip
    Grohmann, Dina
    NANOSCALE, 2018, 10 (35) : 16416 - 16424
  • [27] Nanoparticle Probes for Super-Resolution Fluorescence Microscopy
    Lin, Youhui
    Nienhaus, Karin
    Nienhaus, Gerd Ulrich
    CHEMNANOMAT, 2018, 4 (03): : 253 - 264
  • [28] Mirror Enhanced STED Super-resolution Microscopy
    Yang, Xusan
    Xie, Hao
    Alonas, Eric
    Liu, Yujia
    Chen, Xuanze
    Santangelo, Philip J.
    Ren, Qiushi
    Xi, Peng
    Jin, Dayong
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [29] Super-resolution Microscopy in Plant Cell Imaging
    Komis, George
    Samajova, Olga
    Ovecka, Miroslav
    Samaj, Jozef
    TRENDS IN PLANT SCIENCE, 2015, 20 (12) : 834 - 843
  • [30] CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells
    Ratz, Michael
    Testa, Ilaria
    Hell, Stefan W.
    Jakobs, Stefan
    SCIENTIFIC REPORTS, 2015, 5