Functional and analytic properties of a class of mappings in quasi-conformal analysis

被引:10
作者
Vodopyanov, S. K. [1 ]
Tomilov, A. O. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk, Russia
关键词
quasi-conformal analysis; Sobolev space; composition operator; capacity and modulus of a condenser; CAPACITY; DIFFERENTIABILITY; SPACES; MAPS;
D O I
10.1070/IM9082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a two-index scale Q(q,p), n - 1 < q <= p < infinity, of home-omorphisms of spatial domains in R-n, the geometric description of which is determined by the control of the behaviour of the q-capacity of condensers in the target space in terms of the weighted p-capacity of condensers in the source space. We obtain an equivalent functional and analytic description of Q(q,p) based on the properties of the composition operator (from weighted Sobolev spaces to non-weighted ones) induced by the inverses of the mappings in Q(q,p). When q = p = n, the class of mappings Q(n,n) coincides with the set of so-called Q-homeomorphisms which have been studied extensively in the last 25 years.
引用
收藏
页码:883 / 931
页数:49
相关论文
共 58 条
[1]  
[Anonymous], 1968, Publ. Math. IHES
[2]  
[Anonymous], 2011, Mat. Stud.
[3]  
[Anonymous], 1993, Colloq. Math.
[4]  
[Anonymous], 1961, THESIS
[5]  
[Anonymous], 2002, VLADIKAVK MAT ZH
[6]   Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded (p, q)-distortion [J].
Baykin, A. N. ;
Vodop'yanov, S. K. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (02) :237-261
[7]   ANALYTICAL FOUNDATIONS OF THE THEORY OF QUASICONFORMAL MAPPINGS IN RN [J].
BOJARSKI, B ;
IWANIEC, T .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02) :257-324
[8]  
Brudnyi YA., 1970, Sib. Math.J, V11, P870, DOI [10.1007/BF00967848, DOI 10.1007/BF00967848]
[9]  
Evans L., 1992, Measure theory and fine properties of functions
[10]  
Federer H., 2014, Geometric measure theory, DOI [DOI 10.1007/978-3-642-62010-2, 10.1007/978-3-642-62010-2]