Application of Bayesian Decision Theory Based on Prior Information in the Multi-Objective Optimization Problem

被引:0
作者
Lei, Xia [1 ]
Jin, Maozhu [2 ]
Wang, Qiang [1 ]
机构
[1] Univ Electr Sci & Technol China, Natl Key Lab Commun, Chengdu 610065, Peoples R China
[2] Business Sch Sichuan Univ, Chengdu 610065, Peoples R China
基金
美国国家科学基金会;
关键词
Multi-Objective Optimization; Prior Information; Maximum Entropy Principle; Distributed multiple inputs and multiple outputs; KNOWLEDGE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
General multi-objective optimization methods are hard to obtain prior information, how to utilize prior information has been a challenge. This paper analyzes the characteristics of Bayesian decision-making based on maximum entropy principle and prior information, especially in case that how to effectively improve decision-making reliability in deficiency of reference samples. The paper exhibits effectiveness of the proposed method using the real application of multi-frequency offset estimation in distributed multiple-input multiple-output system. The simulation results demonstrate Bayesian decision-making based on prior information has better global searching capability when sampling data is deficient.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 20 条
[1]  
[Anonymous], Philosophical Transactions of the Royal Society of London for, DOI DOI 10.1098/RSTL.1763.0053
[2]  
Assenza A, 2008, INT J COMPUT INT SYS, V1, P188
[3]  
Etxeberria R., 1999, 2 S ARTIFICIAL INTEL, P332
[4]   AN APPROACH TO THE DESIGN OF DISTRIBUTED BAYESIAN DETECTION STRUCTURES [J].
HASHLAMOUN, WA ;
VARSHNEY, PK .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05) :1206-1211
[5]  
HECKERMAN D, 1995, MACH LEARN, V20, P197, DOI 10.1007/BF00994016
[6]   DISTRIBUTED BAYESIAN SIGNAL-DETECTION [J].
HOBALLAH, IY ;
VARSHNEY, PK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (05) :995-1000
[7]  
Kong GL, 2008, INT J COMPUT INT SYS, V1, P159
[8]  
Liu Y., 2009, INT J COMPUTATIONAL, V2-3, P1875
[9]   Schemata, distributions and graphical models in evolutionary optimization [J].
Mühlenbein, H ;
Mahnig, T ;
Rodriguez, AO .
JOURNAL OF HEURISTICS, 1999, 5 (02) :215-247
[10]   On bounds and algorithms for frequency synchronization for collaborative communication systems [J].
Parker, Peter A. ;
Mitran, Patrick ;
Bliss, Daniel W. ;
Tarokh, Vahid .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (08) :3742-3752