Growth of ultrathin nanosheets of nickel iron layered double hydroxide for the oxygen evolution reaction

被引:18
|
作者
Suliman, Munzir [1 ]
Al Ghamdi, Abdullah [1 ]
Baroud, Turki [2 ]
Drmosh, Qasem [1 ]
Rafatullah, Mohd [3 ]
Yamani, Zain [1 ]
Qamar, Mohammad [1 ,4 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen & Energy Storag, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Mat Sci & Engn Dept, Dhahran 31261, Saudi Arabia
[3] Univ Sains Malaysia, Sch Ind Technol, Div Environm Technol, George Town 11800, Malaysia
[4] King Fahd Univ Petr & Minerals, KA CARE Energy Res & Innovat Ctr, Dhahran 31261, Saudi Arabia
关键词
Cost-effective electrode; Electrocatalyst; PEM Electrolysis; Hydrogen; Clean energy; HIGHLY EFFICIENT; ELECTROCATALYSTS; PERFORMANCE; DEPOSITION; COBALT; TIO2;
D O I
10.1016/j.ijhydene.2022.05.147
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Because of low cost and abundance, nickel-iron double layered hydroxide (NiFe LDH) is seen as a viable substitute for noble-metal-based electrodes for the oxygen evolution reaction (OER). Herein, we report the growth of NiFe LDH in the form of fine nanosheets in a single step using benzyl alcohol-mediated chemistry. The electrochemical studies clearly suggest that benzyl alcohol is capable of inducing effective chemical interaction between Ni and Fe in the NiFe LDH. The overpotential to produce benchmark 10 mA cm-2 (h10) for the NiFe LDH electrode is only ~270 mVRHE, which is much smaller than those of benchmark IrO2 (h10 = 318 mVRHE), nickel hydroxide (h10 = 370 mVRHE) and iron hydroxide (h10 = 410 mVRHE) for the OER. The difference of the overpotential requirement increases further with increasing current density, indicating faster kinetics of the OER at the catalytic interface of the NiFe LDH. Estimation of Tafel values verifies this notion - the Tafel slopes of NiFe LDH, Ni(OH)2, and FeOOH are calculated to be 48.6, 55.8, and 59.3 mV dec-1, respectively. At h = 270 mV, the turnover frequency (TOF) of the NiFe LDH is 0.48 s-1, which is ~8 and ~11 folds higher than those of Ni(OH)2 (0.059 s-1) and FeOOH (0.042 s-1). In addition to Tafel and TOF, the NiFe LDH electrode has favorable electrochemically active surface area and electrochemical impedance. The electrochemical stability of the NiFe LDH electrode is assessed by conducting potentiostatic measurements at h = 270 mVRHE (-10 mA cm-2) and at h = 355 mVRHE (-30 mA cm-2) for 24 h of continuous oxygen production.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:23498 / 23507
页数:10
相关论文
共 50 条
  • [11] Trace tungsten and iron-doped nickel hydroxide nanosheets for an efficient oxygen evolution reaction
    Li, Chun
    Tian, Peng
    Pang, Hongchang
    Gong, Weitao
    Ye, Junwei
    Ning, Guiling
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (06) : 2792 - 2799
  • [12] Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction
    Yang, Fengkai
    Sliozberg, Kirill
    Sinev, Ilya
    Antoni, Hendrik
    Baehr, Alexander
    Ollegott, Kevin
    Xia, Wei
    Masa, Justus
    Gruenert, Wolfgang
    Roldan Cuenya, Beatriz
    Schuhmann, Wolfgang
    Muhler, Martin
    CHEMSUSCHEM, 2017, 10 (01) : 156 - 165
  • [13] Ultrathin sulfate-intercalated NiFe-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution
    Jiang, Xiao-Xiao
    Xue, Jiang-Yan
    Zhao, Zhong-Yin
    Li, Cong
    Li, Fei-Long
    Cao, Chen
    Niu, Zheng
    Gu, Hong-Wei
    Lang, Jian-Ping
    RSC ADVANCES, 2020, 10 (21) : 12145 - 12150
  • [14] Boosting oxygen evolution reaction of transition metal layered double hydroxide by metalloid incorporation
    Han, HyukSu
    Kim, Kang Min
    Ryu, Jeong Ho
    Lee, Ho Jun
    Woo, Jungwook
    Ali, Ghulam
    Chung, Kyung Yoon
    Kim, Taekyung
    Kang, Sukhyun
    Choi, Seunggun
    Kwon, Jiseok
    Chung, Yong-Chae
    Mhin, Sungwook
    Song, Taeseup
    NANO ENERGY, 2020, 75
  • [15] Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction
    Wu, Libo
    Yu, Luo
    Zhang, Fanghao
    Wang, Dezhi
    Luo, Dan
    Song, Shaowei
    Yuan, Chuqing
    Karim, Alamgir
    Chen, Shuo
    Ren, Zhifeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 8096 - 8103
  • [16] Oxygen vacancy-rich nickel-iron layered double hydroxide nanosheets wrapped nickel-cobalt hybrid sulfides as efficient electrocatalysts for oxygen evolution reaction
    Gao, Yunfeng
    Cui, Peng
    Gu, Tao
    Miao, Fang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 109 : 287 - 294
  • [17] Hierarchical nanosheets of ternary CoNiFe layered double hydroxide for supercapacitors and oxygen evolution reaction
    Rohn, R. C.
    Jagadale, Ajay D.
    Shinde, Surendra K.
    Kim, D-Y
    Kumbhar, Vijay S.
    Nakayama, Masaharu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 863
  • [18] Deeply Reconstructed NiFe Layered Double Hydroxide Nanosheets for an Efficient Oxygen Evolution Reaction
    Cai, Songchi
    Liu, Hangchen
    Cheng, Haoyan
    Sun, Bo
    Xia, Wanting
    Hu, Hao
    Zhou, Shan
    ACS APPLIED NANO MATERIALS, 2023, 6 (09) : 7864 - 7872
  • [19] Combustion Growth of NiFe Layered Double Hydroxide for Efficient and Durable Oxygen Evolution Reaction
    Zhou, Yu
    Gao, Jinqiang
    Ju, Min
    Chen, Yanpeng
    Yuan, Haifeng
    Li, Simeng
    Li, Jinlong
    Guo, Dongxuan
    Hong, Mei
    Yang, Shihe
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 28526 - 28536
  • [20] Ce-Doped NiFe-Layered Double Hydroxide Ultrathin Nanosheets/Nanocarbon Hierarchical Nanocomposite as an Efficient Oxygen Evolution Catalyst
    Xu, Huajie
    Wang, Bingkai
    Shan, Changfu
    Xi, Pinxian
    Liu, Weisheng
    Tang, Yu
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (07) : 6336 - 6345