Growth of ultrathin nanosheets of nickel iron layered double hydroxide for the oxygen evolution reaction

被引:20
作者
Suliman, Munzir [1 ]
Al Ghamdi, Abdullah [1 ]
Baroud, Turki [2 ]
Drmosh, Qasem [1 ]
Rafatullah, Mohd [3 ]
Yamani, Zain [1 ]
Qamar, Mohammad [1 ,4 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen & Energy Storag, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Mat Sci & Engn Dept, Dhahran 31261, Saudi Arabia
[3] Univ Sains Malaysia, Sch Ind Technol, Div Environm Technol, George Town 11800, Malaysia
[4] King Fahd Univ Petr & Minerals, KA CARE Energy Res & Innovat Ctr, Dhahran 31261, Saudi Arabia
关键词
Cost-effective electrode; Electrocatalyst; PEM Electrolysis; Hydrogen; Clean energy; HIGHLY EFFICIENT; ELECTROCATALYSTS; PERFORMANCE; DEPOSITION; COBALT; TIO2;
D O I
10.1016/j.ijhydene.2022.05.147
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Because of low cost and abundance, nickel-iron double layered hydroxide (NiFe LDH) is seen as a viable substitute for noble-metal-based electrodes for the oxygen evolution reaction (OER). Herein, we report the growth of NiFe LDH in the form of fine nanosheets in a single step using benzyl alcohol-mediated chemistry. The electrochemical studies clearly suggest that benzyl alcohol is capable of inducing effective chemical interaction between Ni and Fe in the NiFe LDH. The overpotential to produce benchmark 10 mA cm-2 (h10) for the NiFe LDH electrode is only ~270 mVRHE, which is much smaller than those of benchmark IrO2 (h10 = 318 mVRHE), nickel hydroxide (h10 = 370 mVRHE) and iron hydroxide (h10 = 410 mVRHE) for the OER. The difference of the overpotential requirement increases further with increasing current density, indicating faster kinetics of the OER at the catalytic interface of the NiFe LDH. Estimation of Tafel values verifies this notion - the Tafel slopes of NiFe LDH, Ni(OH)2, and FeOOH are calculated to be 48.6, 55.8, and 59.3 mV dec-1, respectively. At h = 270 mV, the turnover frequency (TOF) of the NiFe LDH is 0.48 s-1, which is ~8 and ~11 folds higher than those of Ni(OH)2 (0.059 s-1) and FeOOH (0.042 s-1). In addition to Tafel and TOF, the NiFe LDH electrode has favorable electrochemically active surface area and electrochemical impedance. The electrochemical stability of the NiFe LDH electrode is assessed by conducting potentiostatic measurements at h = 270 mVRHE (-10 mA cm-2) and at h = 355 mVRHE (-30 mA cm-2) for 24 h of continuous oxygen production.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:23498 / 23507
页数:10
相关论文
共 55 条
[1]   Controlled growth of small and uniformly dispersed Mo2C on carbon nanotubes as high performance electrocatalyst for the hydrogen evolution reaction [J].
Adam, Alaaldin ;
Suliman, Munzir H. ;
Awwad, Mohammad ;
Siddiqui, Mohammad N. ;
Yamani, Zain H. ;
Qamar, Mohammad .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) :11797-11807
[2]   Reaping the catalytic benefits of both surface (NiFe2O4) and underneath (Ni3Fe) layers for the oxygen evolution reaction [J].
Alharthy, Mohammad ;
Suliman, Munzir H. ;
Al-Betar, Abdul-Rahman ;
Wang, Yuan ;
Tian, Ziqi ;
Drmosh, Qasem A. ;
Yamani, Zain H. ;
Qamar, Mohammad .
SUSTAINABLE ENERGY & FUELS, 2021, 5 (10) :2704-2714
[3]   Facile Synthesis of Nanoporous Transition Metal-Based Phosphates for Oxygen Evolution Reaction [J].
Bhanja, Piyali ;
Kim, Yena ;
Paul, Bappi ;
Lin, Jianjian ;
Alshehri, Saad M. ;
Ahamad, Tansir ;
Kaneti, Yusuf Valentino ;
Bhaumik, Asim ;
Yamauchi, Yusuke .
CHEMCATCHEM, 2020, 12 (07) :2091-2096
[4]   Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting [J].
Bodhankar, Pradnya M. ;
Sarawade, Pradip B. ;
Singh, Gurwinder ;
Vinu, Ajayan ;
Dhawale, Dattatray S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (06) :3180-3208
[5]   Nanostructured cobalt-modified molybdenum carbides electrocatalysts for hydrogen evolution reaction [J].
Bukola, Saheed ;
Merzougui, Belabbes ;
Creager, Stephen E. ;
Qamar, Mohammad ;
Pederson, Larry R. ;
Noui-Mehidi, Mohamed N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (48) :22899-22912
[6]   Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction [J].
Cai, Zhengyang ;
Bu, Xiuming ;
Wang, Ping ;
Ho, Johnny C. ;
Yang, Junhe ;
Wang, Xianying .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (10) :5069-5089
[7]   Catalytic activity atlas of ternary Co-Fe-V metal oxides for the oxygen evolution reaction [J].
Chen, Junsheng ;
Li, Hao ;
Pei, Zengxia ;
Huang, Qianwei ;
Yuan, Ziwen ;
Wang, Chaojun ;
Liao, Xiaozhou ;
Henkelman, Graeme ;
Chen, Yuan ;
Wei, Li .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) :15951-15961
[8]   Flexible Active-Site Engineering of Monometallic Co-Layered Double Hydroxides for Achieving High-Performance Bifunctional Electrocatalyst toward Oxygen Evolution and H2O2 Reduction [J].
Chen, Qian ;
Ding, Rong ;
Liu, Huan ;
Zhou, Lingxi ;
Wang, Yi ;
Zhang, Yun ;
Fan, Guangyin .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (11) :12919-12929
[9]   Sustainable Hydrogen Production from Offshore Marine Renewable Farms: Techno-Energetic Insight on Seawater Electrolysis Technologies [J].
d'Amore-Domenech, Rafael ;
Leo, Teresa J. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (09) :8006-+
[10]   In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution [J].
Dionigi, Fabio ;
Zeng, Zhenhua ;
Sinev, Ilya ;
Merzdorf, Thomas ;
Deshpande, Siddharth ;
Lopez, Miguel Bernal ;
Kunze, Sebastian ;
Zegkinoglou, Ioannis ;
Sarodnik, Hannes ;
Fan, Dingxin ;
Bergmann, Arno ;
Drnec, Jakub ;
de Araujo, Jorge Ferreira ;
Gliech, Manuel ;
Teschner, Detre ;
Zhu, Jing ;
Li, Wei-Xue ;
Greeley, Jeffrey ;
Roldan Cuenya, Beatriz ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2020, 11 (01)